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Causal inference preliminaries

Task Given a qualitative causal graph and data, estimate causal effect of

X on Y [Pearl, 2009]:

p(Y | do(X = x))
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Graph type Acyclic directed mixed graph (ADMG) G = (V, E) with
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Causal inference preliminaries

Task Given a qualitative causal graph and data, estimate causal effect of

X on Y [Pearl, 2009]:

p(Y | do(X = x))

Different types of effects Here total causal effect through direct and

indirect path through mediator(s) M
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Causal inference preliminaries

Extended task Given a qualitative causal graph and data: Estimate

conditional causal effect of X on Y given S

p(Y | do(X = x),S = s)
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Causal inference preliminaries

Identifiability Effect is identifiable if it can be expressed as a function of

the observational distribution p(V) [Pearl, 2009]:

p(Y | do(X = x),S = s) = q(p(V))

Different approaches: Backdoor adjustment / Frontdoor adjustment /

General do-calculus
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Causal inference preliminaries

Valid backdoor adjustment sets A set Z for the total causal effect of

X on Y is called valid relative to (X ,Y ) if the interventional distribution

for setting do(X = x) factorizes as:

p(Y |do(X = x)) = q(p(V)) =

∫
Z

p(Y |x , z)p(z)dz
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Causal inference preliminaries

Generalized backdoor criterion [Perković et al., 2018]: With

forb(X ,Y ) = X ∪ des(YM) a set Z is valid if:

1. Z ∩ forb = ∅, and
2. all proper non-causal paths from X to Y are blocked by Z.
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Causal inference preliminaries

Adjust-set [Perković et al., 2018] is valid if and only if a valid set

exists:

vancs(X ,Y ,S) = an(XYS) \ forb (1)
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Causal inference preliminaries
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Causal inference preliminaries

(Linear) total causal effect for x = x ′ + 1 with a valid set Z is equal to

βYX ·ZS in

Y = βYX ·ZS X +
∑
i

βYZi ·XSZi +
∑
i

βYSi ·XZSi (1)
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Problem setting

Consider all adjustment sets
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Problem setting

Consider all adjustment sets

All valid sets lead to estimates with zero bias of β̂YX ·ZS, but variance

strongly differs.
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Problem setting

Open problem Find valid adjustment set that yields minimal asymptotic

variance:

Zoptimal ∈ argminZ∈ZE [(∆yxx′|s − ∆̂yxx′|s.z)
2] . (2)
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Information-theoretic optimal adjustment theory

Def.: Conditional mutual information (CMI) for Shannon entropy

HY |X = −
∫
x,y

p(x , y) ln p(y |x)dxdy
IX ;Y |Z ≡ HY |Z − HY |ZX (3)

≥ 0 (4)

= 0 ⇔ X ⊥⊥ Y | Z (5)
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Information-theoretic optimal adjustment theory

Compare Adjust set Z = Z1Z2 vs O = Z2Z3
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Information-theoretic optimal adjustment theory

Compare Adjust set Z = Z1Z2 vs O = Z2Z3

Two reasons for smaller estimator variance:

1. Larger residual variance of X

2. Smaller residual variance of Y
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Information-theoretic optimal adjustment theory

Intuition Choose an adjustment set Z that maximally constrains Y and

minimally constrains X
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Information-theoretic optimal adjustment theory

Intuition Choose an adjustment set Z that maximally constrains Y and

minimally constrains X

Def. 1: Adjustment information

JZ ≡ JXY |S.Z ≡ IZ;Y |XS − IX ;Z|S (3)
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Information-theoretic optimal adjustment theory

Optimality results are valid for estimators ∆̂yxx′|s.z that obey

Zoptimal ∈ argmaxZ∈ZJZ ⇒ Var(∆̂yxx′|s.zoptimal
) = min

Z∈Z
Var(∆̂yxx′|s.z)

In paper theoretically shown for OLS, experimentally also for other

estimators.
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Information-theoretic optimal adjustment theory
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Information-theoretic optimal adjustment theory
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Information-theoretic optimal adjustment theory

Def. 2: Graphical optimality For a tuple (G,X ,Y ,S) graphical

optimality holds if there is a Z ∈ Z s.t. for all other Z′ ̸= Z ∈ Z and

all distributions P consistent with G we have JZ ≥ JZ′ .
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Information-theoretic optimal adjustment theory

Is there always an optimal adjustment set?
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Information-theoretic optimal adjustment theory
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Information-theoretic optimal adjustment theory
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Information-theoretic optimal adjustment theory

Yes for DAGs without hidden variables

([Henckel et al., 2019, Witte et al., 2020, Rotnitzky and Smucler, 2019]):

O = P = pa(YM) \ forb . (3)
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Yes for DAGs without hidden variables
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The optimal adjustment set for ADMGs with hidden variables

Intuition Constraining Y by pa(YM) not enough...

...add spouses since I (Z1;Y ) > 0 (as long as /∈ forb)...
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The optimal adjustment set for ADMGs with hidden variables

Intuition Constraining Y by pa(YM) not enough...

...add spouses since I (Z1;Y ) > 0 (as long as /∈ forb)...

...and spouses of spouses since I (Z1Z2;Y ) = I (Z1;Y ) + I (Z2;Y |Z1)︸ ︷︷ ︸
≥0

...
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...until a tail is reached or the path ends...
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The optimal adjustment set for ADMGs with hidden variables

Intuition Constraining Y by pa(YM) not enough...

...add spouses since I (Z1;Y ) > 0 (as long as /∈ forb)...

...and spouses of spouses since I (Z1Z2;Y ) = I (Z1;Y ) + I (Z2;Y |Z1)︸ ︷︷ ︸
≥0

...

...until a tail is reached or the path ends...

...exclude collider if C ��⊥⊥ X | vancs (avoids non-causal paths)...
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The optimal adjustment set for ADMGs with hidden variables

Intuition Constraining Y by pa(YM) not enough...

...add spouses since I (Z1;Y ) > 0 (as long as /∈ forb)...

...and spouses of spouses since I (Z1Z2;Y ) = I (Z1;Y ) + I (Z2;Y |Z1)︸ ︷︷ ︸
≥0

...

...until a tail is reached or the path ends...

...exclude collider if C ��⊥⊥ X | vancs (avoids non-causal paths)...

...except if C ∈ vancs where vancs = an(XYS) \ forb
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The optimal adjustment set for ADMGs with hidden variables

Def. O-set: O(X ,Y ,S) = P ∪ C ∪ PC where

P = pa(YM) \ forb
C = “valid collider paths from W ∈ YM”

PC = pa(C)

where colliders C ∈ C fulfill

(1) C /∈ forb, and (2a) C ∈ vancs or (2b) C ⊥⊥ X | vancs . (4)
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The optimal adjustment set for ADMGs with hidden variables

Theorem 1 (Validity) If and only if a valid backdoor adjustment set

exists, then O is a valid adjustment set.
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The optimal adjustment set for ADMGs with hidden variables

Theorem 2 (O-set vs Adjust set)

JO ≥ Jvancs for any graph G (...).

=⇒ Var(∆̂yxx′|s.o) ≤ Var(∆̂yxx′|s.adjust)
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Necessary and sufficient conditions for graphical optimality

Theorem 3 If and only if (...)

(I) for all N ∈ N = sp(YMC) \ (forbOS) and all its collider paths i to

W ∈ YM (...) it holds that OπN
i
= O(X ,Y ,S′ = SNπN

i ) is non-valid,

and

(II) for all E ∈ O \ P with E��⊥⊥X | SO \ {E} there exists E↔W or

E∗→C↔· · ·↔W where all colliders C ∈ vancs,

then O is optimal for all probability densities consistent with G.
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Numerical experiments in paper

• Among 12,000 randomly created configurations 95% fulfill

optimality!

• OLS estimator: Theoretical asymptotic results also hold for finite

samples up to very small sample sizes

• Neural net estimator: Theory also applies to linear SCMs, but not

for nonlinear SCMs

• kNN-estimator: Theory not applicable, but a variant of O-set

seems to outperform others
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Summary

• Theorem 3 completely characterizes graphical optimality for ADMGs

(and DMAGs)

• O-set is valid iff a valid set exists and always better than Adj-set

→ natural choice in automated causal inference

• Python code: https://github.com/jakobrunge/tigramite

• Open questions: Theory for non-parametric estimators, PAGs, ...
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Thank you! Questions?

• Nature Comm. Perspective on causal discovery in time series

[Runge et al., 2019a]

• Causal inference: full theory [Pearl, 2009], primer

[Pearl et al., 2016], linear models [Pearl, 2013], popular science book

[Pearl and Mackenzie, 2018]

• Causal discovery: general [Spirtes et al., 2000], for time series

[Runge, 2018, Runge et al., 2019a]

• Restricted SCMs [Peters et al., 2017]

• PCMCI [Runge et al., 2019b] in Science Advances

• PCMCI+ [Runge, 2020] in UAI

• LPCMCI [Gerhardus and Runge, 2020] in NeurIPS

• Optimal adjustment [Runge, 2021] in NeurIPS

• My software: jakobrunge.github.io/tigramite
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