GRADIENT BASED HPO OVER

LONG HORIZONS




OVERVIEW

Meta-learning & HPO
Critique of BPTT and greediness for long inner loops
Forward mode differentiation

Hyperparameter sharing




META-LEARNING

Learning to learn
Reduces human “algorithm engineering”

Meta-Learning in Neural Networks: A Survey
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GRADIENT BASED HPO

Useful to formalize as a constrained optimization

A* = argmin Lya1(07(N), Dya) Outer Loop
A

subject to 0y = P (Lirain (0:(A), Dirain), A) Inner Loop

Learn hyperparameters A

... such that the network weights 07 after T steps of optimizer ¢ on the train loss
... also minimize the validation loss

dLval (HT)
dA

Ultimately what we want is the hypergradient:



USING BPTT
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OUTER FORWARD PASS

OUTER BACWARD PASS

' W ¢

b (Lirain(02), 43) ¢ (Lirain(01-1), A1) ALyq1(07)

dA




CHALLENGES WHEN T IS LARGE:
MEMORY

p-1p-Pp-p-p- - p-p-p-p

In BPTT, you need to store each inner step in memory
Ok for few-shot learning (e.g. MAML where T ~ 5 inner steps) @
But for problems like CIFAR-10, we need T ~ 10* inner steps ()




CHALLENGES WHEN T IS LARGE:
GRADIENT DEGRADATION

Broad issue that arises when a parameter influences some scalar in a
chaotic fashion (such as a long composition of non-linear ops)

Vanishing + exploding hypergradients = high variance @




SOLUTION = GREEDINESS..?

We can take H steps before updating hyperparameters, with H << T

H is the horizon




SOLUTION = GREEDINESS..?

For instance if H = 1:

OUTER BACWARD PASS

/

¢ (Ltrain (91); /12)

[I > [I dLyq(62)
dA

OUTER FORWA-




SOLUTION = GREEDINESS..?

Solves memory issue of BPTT
Solves gradient degradation
Improves computational cost

Solves for the wrong objective

]
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Understanding short-horizon bias in stochastic meta-
optimization, Yuhuai Wu et. al., ICLR, 2018
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SOLUTION = FORWARD MODE
DIFFERENTIATION...?

Calculate gradient components during forward pass

Applying it to HPO:

reverse mode
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FORWARD MODE DIFFERENTIATION

¢ (Ltrain (eT—l): /‘lT)
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) dLval (QT)
dA

OUTER FORWARD PASS



FORWARD MODE DIFFERENTIATION

Memory cost constant with horizon size @
Solves for correct objective @

-
Memory cost scales poorly with size of 4 N

Doesn’t solve gradient degradation @




hypergradients
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SOLVING GRADIENT DEGRADATION
WITH ENSEMBLE AVERAGING

Each seed gives different hypergradients
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Ensemble average = too expensive in compute / memory @




hypergradients
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SOLVING GRADIENT DEGRADATION
WITH TIME AVERAGING

Time averaging averages hypergradients in window of size W/

XY Wi
................
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Cheap, and easily achieved by sharing hyperparameters @




SOLVING GRADIENT DEGRADATION
WITH TIME AVERAGING

FARAANA R AN

What window size should we use!?

Optimal W = tradeoff between variance reduction and bias increase

MSE1 62(W2 — 1)

MSEw <
Shw < ==+ 12




LEARNING SCHEDULES ON CIFARIO

RESULTS:
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RESULTS: REGRET
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CONCLUSION

You can differentiation through ~ 10* gradient steps by sharing
contiguous hyperparameters in forward mode differentiation

Future work:
Use automatic forward mode differentiation

Tackle harder problems/datasets

Contact: paul.micaelli@ed.ac.uk



