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Generative modeling

Assume available dataset D, obtained by sampling an unknown data.
distribution pD

Our goal is to approximate the unknown pD using a model pθ
Minimize divergence between pD and pθ:

min KL(pD ||pθ) = min Ex∈D [− ln pθ(x)]

Various designs of pθ: Autoregressive factorization Van Oord et al.
(2016), Lower bound using variational distribution Kingma and
Welling (2014), Unnormalized distribution Salakhutdinov and Hinton
(2009), etc.
We focus on a bijective formulation of pθ due to exact likelihood and
efficient sampling Rezende and Mohamed (2015)
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Normalizing flows

Given the differentiable bijection f θ, the change of variable formula is:

pθ(x) = p(z)
∣∣∣∣det ∂z

∂x

∣∣∣∣ , z = f θ(x)

By defining f θ as composition f θ = f θK ◦ f θK−1 ◦ · · · ◦ f θ1 , we obtain
log-likelihood Dinh et al. (2015) and Rezende and Mohamed (2015):

ln pθ(x) = ln p(zK ) +
K∑

i=1
ln | det Jfi |.

x f1←→ z1
f2←→ z2

f3←→ · · · fi−1←→ z i
fi←→ · · · fK←→ zK , zK ∼ N (0, I)

Due to the bijective constraint, every zi has the same dimensionality
Model expressiveness is limited by the input dimensionality
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Intermediate variable augmentation

At arbitrary step i :

· · · fi−1←→ z i
aug−→ [z i , e i ]

hi−→ z(aug)
i

fi+1←→ z i+1
fi+2←→ · · ·

aug(·) concatenates noise to latent representation z i :

aug(z i) = [z i , e i ], e i ∼ N (0, I)

hi(·, ·) transforms the noise based on previous latent variables z<i :

z(aug)
i = hi([z i , e i ], z<i) = [z i ,σ � e i + µ], (µ,σ) = gi(z<i)

∂z(aug)
i

∂[z i , e i ]
=

[
I 0
0 diag(σ)

]
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Cross-unit coupling

At arbitrary step i :

· · · fi−1←→ z i
(aug)−→ [z i , e i ]

hi−→ z(aug)
i

fi+1←→ z i+1
fi+2←→ · · ·

Likelihood lower bound defined as:

ln p(z i) ≥ Ee i∼p∗(e i )[ln p(z(aug)
i )− ln p∗(e i) + ln | detdiag(σ)|].

Trivial ”inverse” - remove noise dimensions:

z(aug)
i = [z i ,σ � e i + µ]⇒ z i = z(aug)

i [:d], d = dim(z i)

Resulting scheme with the increased model width at arbitrary steps:

x f1←→ z1
f2,aug,h2←→ z(aug)

2
f3←→ · · · fi ,aug,hi←→ z(aug)

i
fi+1←→ · · · fK←→ zK
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Cross-unit coupling - scheme

Invertible unit: arbitrary
composition of differentiable
bijections
Cross-unit coupling: modular
coupling layer over latent
representations in multiple
stages
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Intra-unit coupling

Based on Glow modules Kingma
and Dhariwal (2018)
Coupling network fuses:

Local correlations produced by
Dense block Huang et al.
(2017)
Global context captured by
Nyström Self-attention Xiong
et al. (2021)

More efficient than Flow++
coupling Ho et al. (2019)
Intra-unit coupling: second
level of skip connections
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DenseFlow

Image-oriented multi-scale architecture
Dense skip connections provided by cross-unit and intra-unit couplings
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Density estimation

Method CIFAR-10 ImageNet CelebA ImageNet
32x32 32x32 64x64 64x64

Variational
Autoencoders

Conv Draw Gregor et al. (2016) 3.58 4.40 - 4.10
DVAE++ Vahdat et al. (2018) 3.38 - - -
IAF-VAE Kingma et al. (2016) 3.11 - - -
BIVA Maaløe et al. (2019) 3.08 3.96 2.48 -
Imp. DDPM Nichol and Dhariwal (2021) 2.94 - - 3.53

Autoregressive
Models

Gated PixelCNNOord et al. (2016) 3.03 3.83 - 3.57
PixelRNN Van Oord et al. (2016) 3.00 3.86 - 3.63
PixelCNN++ Salimans et al. (2017) 2.92 - - -
Image Transformer Parmar et al. (2018) 2.90 3.77 2.61 -
PixelSNAIL Chen et al. (2018) 2.85 3.80 - -
SPN Menick and Kalchbrenner (2019) - 3.85 - 3.53
Routing transformer Roy et al. (2021) 2.95 - - 3.43

Normalizing
Flows

Real NVP Dinh et al. (2017) 3.49 4.28 3.02 3.98
GLOW Kingma and Dhariwal (2018) 3.35 4.09 - 3.81
Residual Flow Chen et al. (2019) 3.28 4.01 - 3.78
i-DenseNet Perugachi-Diaz et al. (2021) 3.25 3.98 - -
Flow++ Ho et al. (2019) 3.08 3.86 - 3.69
ANF Huang et al. (2020) 3.05 3.92 - 3.66
VFlow Chen et al. (2020) 2.98 3.83 - 3.66

Hybrid
Architectures

MaCow Ma et al. (2019) 3.16 - - 3.69
SurVAE Flow Nielsen et al. (2020) 3.08 4.00 - 3.70
NVAE Vahdat and Kautz (2020) 2.91 3.92 2.03 -
PixelVAE++ Sadeghi et al. (2019) 2.90 - - -
δ-VAE Razavi et al. (2019) 2.83 3.77 - -
DenseFlow-74-10 (ours) 2.98 3.63 1.99 3.35
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Computational complexity

Our DenseFlow uses only one GPU for training!
Without gradient checkpointing
Without mixed precision

Dataset Model GPU type GPUs Duration (h) Likelihood (bpd)

CIFAR-10
VFlow Chen et al. (2020) RTX 2080Ti 16 ∼500 2.98
NVAE Vahdat and Kautz (2020) Tesla V100 8 55 2.91
DenseFlow-74-10 (ours) RTX 3090 1 250 2.98

ImageNet32
VFlow Chen et al. (2020) Tesla V100 16 ∼1440 3.83
NVAE Vahdat and Kautz (2020) Tesla V100 24 70 3.92
DenseFlow-74-10 (ours) Tesla V100 1 310 3.63

CelebA
VFlow Chen et al. (2020) n/a n/a n/a -
NVAE Vahdat and Kautz (2020) Tesla V100 8 92 2.03
DenseFlow-74-10 (ours) Tesla V100 1 224 1.99
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Visual quality - FID score

Competitive visual quality on CIFAR10

Model FID ↓
Autoregressive
Models

PixelCNN Ostrovski et al. (2018) and Van Oord et al. (2016) 65.93
PixelIQN Ostrovski et al. (2018) 49.46

Normalizing
Flows

i-ResNet Behrmann et al. (2019) 65.01
Glow Kingma and Dhariwal (2018) 46.90
Residual flow Chen et al. (2019) 46.37

GANs
DCGAN Ostrovski et al. (2018) and Radford et al. (2016) 37.11
WGAN-GP Gulrajani et al. (2017) and Ostrovski et al. (2018) 36.40
DA-StyleGAN V2 Zhao et al. (2020) 5.79

Hybrid
Architectures

SurVAE-flow Nielsen et al. (2020) 49.03
VAEBM Xiao et al. (2020) 12.19
DenseFlow-74-10 (ours) 34.90
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Visual samples

Samples generation:
Sample the latent distribution to obtain z: z ∼ N (0, I)
Apply the inverse transformation x = f−1

θ (z)
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Takeaways

Expressiveness of a NF does not only depend on latent dimensionality
but also on its distribution across the model depth
Expressiveness of a NF can also be improved by conditioning the
introduced noise with the proposed densely connected cross-unit
coupling
Combining these insights with Nystrom self attention and the
proposed intra-unit coupling increases the NF performance while
reducing computational requirements

GitHub: matejgrcic/DenseFlow
ArXiv: abs/2106.04627
Contact: matej.grcic@fer.hr
Questions: email or new issue
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