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Main Goal of this Work

I Deep Neural Networks (DNNs) exhibit unwanted behaviors as they
tend to be overconfident even in presence of wrong decisions.
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Main Goal of this Work

I DOCTOR is a simple method to detect whether a model’s prediction
is likely to be correct (accept), or not (reject).
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For a given x 2 X ,
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I
Optimal (Oracle) Detector

PY jX


 2R+

x� PX

1
�
Pe(x) > 
 y (1xPe(x))

�Accept 0 /
Reject 1

PY jX (fDn
(x)jx)

Unfortunately, in practice PY jX is not available: we need to find a way to
approximate Pe(x).

16



I
DOCTOR: D�(x; 
)

For a given x 2 X ,

1x bg(x) =∆ X
y2Y

PbY jX
(y jx)P ( bY 6= y jx) = 1x

X
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I
DOCTOR: D�(x; 
)

For a given x 2 X ,

I The self-error variable is defined as:

bE (x) =∆ 1[ bY 6= fDn
(x)];
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I
Metrics

FRR versus TRR
The false rejection rate (FRR) represents the probability that a hit (sample
correctly classified) is rejected, while the true rejection rate (TRR) is the
probability that a miss (sample wrongly classified) is rejected.

AUROC
The area under the Receiver Operating Characteristic curve (ROC) depicts
the relationship between TRR and FRR. The perfect detector corresponds
to a score of 100%.

FRR at 95% TRR
This is the probability that a hit is rejected when the TRR is at 95%.
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I
Totally Black Box & Partially Black Box

Totally Black Box (TBB) Scenario
In TBB only the output of the last layer of the network is available, hence
gradient-propagation to perform input pre-processing is not allowed.

Partially Black Box (PBB) Scenario
In PBB we allow method-specific inputs perturbations and the possibility
of doing temperature scaling.
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I
Competitors - PBB

1) ODIN [Liang et al., 2018]
It comprises temperature scaling and input pre-processing via perturbation.
It compares the maximum softmax probability with a threshold � 2 [0;1] to
decide whether to accept or to reject the input sample.

2) Mahalanobis distance for OOD (MHLNB) [Lee et al., 2018]
It consists in calculating the distance between the input sample and
training distribution. It compares the distance with a threshold � 2R to
decide whether to accept or to reject the input sample.

3) Energy Score (ENERGY) [Liu et al., 2020]
It comprises the the denominator of the softmax activation and it
compares it with a threshold � 2R.
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I
Competitors - TBB

1) Softmax Response
(SR) [Hendrycks and Gimpel, 2017, Geifman and El-Yaniv, 2017]
ODIN without temperature scaling and input pre-processing.

2) Mahalanobis distance for OOD (MHLNB) [Lee et al., 2018]
Mahalanobis distance without input pre-processing and with the softmax
output in place of the logits.
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I
Discrimination Performance - PBB

Figure 2. DOCTOR, ODIN and MHLNB to split data samples in
TinyImageNet under PBB. Histograms for wrongly classified samples and
correctly classified samples.
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I
PBB: ROCs

CIFAR10

Figure 3. ROC curves. Comparison between DOCTOR, ODIN and
MHLNB. The red dashed line marks the 95% threshold of TRR. 33
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I
Overall Results: TBB & PBB

DATASET METHOD
AUROC % FRR % (95 % TRR)

TBB PBB TBB PBB

CIFAR10
Acc. 95%

D� 94 95.2 17.9 13.9

D� 68.5 94.8 18.6 13.4

ODIN 93.8 94.2 18.2 18.4

SR 93.8 - 18.2 -

MHLNB 92.2 84.4 30.8 44.6

ENERGY - 91.1 - 34.7

CIFAR100
Acc. 78%

D� 87 88.2 40.6 35.7

D� 84.2 87.4 40.6 36.7

ODIN 86.9 87.1 40.5 40.7

SR 86.9 - 40.5 -

MHLNB 82.6 50 66.7 94

ENERGY - 78.7 - 65.4

Tiny
ImageNet
Acc. 63%

D� 84.9 86.1 45.8 43.3

D� 84.9 85.3 45.8 45.1

ODIN 84.9 84.9 45.8 45.3

SR 84.9 - 45.8 -

MHLNB 78.4 59 82.3 86

ENERGY - 78.2 - 63.7

DATASET METHOD
AUROC % FRR % (95 % TRR)

TBB PBB TBB PBB

SVHN
Acc. 96%

D� 92.3 93 38.6 36.6

D� 92.2 92.8 39.7 38.4

ODIN 92.3 92.3 38.6 40.7

SR 92.3 - 38.6 -

MHLNB 87.3 88 85.8 54.7

ENERGY - 88.9 - 49.4

Amazon
Fashion
Acc. 85%

D� 89.7 - 27.1 -

D� 89.7 - 26.3 -

SR 87.4 - 50.1

ENERGY - - - -

Amazon
Software
Acc. 73%

D� 68.8 - 73.2 -

D� 68.8 - 73.2 -

SR 67.3 - 86.6 -

ENERGY - - - -

IMDb
Acc. 90%

D� 84.4 - 54.2 -

D� 84.4 - 54.4 -

SR 83.7 - 61.7 -

ENERGY - - - -

Table 1. Collection of the results in both TBB and PBB.
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We observe a reduction of up 4% of FRR in the PBB scenario.
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I
Misclassification Detection in Presence of
Out-Of-Distribution (OOD) Samples

I DOCTOR is not tuned for OOD detection (differently from ODIN).

I We test ODIN and DOCTOR when one sample to reject out of five
(ô), three (õ), or two (÷) is OOD.
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I DOCTOR is not tuned for OOD detection (differently from ODIN).

I We test ODIN and DOCTOR when one sample to reject out of five
(ô), three (õ), or two (÷) is OOD.

DATASET-
In

DATASET-
Out

AUROC % FRR % (95 % TRR)

D� D� ODIN ENERGY D� D� ODIN ENERGY

CIFAR10
ô

iSUN 95.4 / 0.1 95.1 / 0.1 94.6 / 0.1 92.4 / 0 14 / 0.5 13.5 / 0.4 17.2 / 0.3 32.2 / 0.1

Tiny (res) 95.2 / 0.1 94.9 / 0 94.6 / 0.1 92.3 / 0.1 14 / 0.4 14 / 0.5 17.8 / 0.4 32.2 / 0.1

CIFAR10
õ

iSUN 95.5 / 0.1 95.3 / 0.1 94.9 / 0.1 92.9 / 0 14.4 / 0.6 13.4 / 0.2 16.8 / 0.5 27 / 1

Tiny (res) 95.4 / 0.1 95 / 0.1 94.8 / 0.1 92.8 / 0 15 / 0.1 14.8 / 0.7 17 / 0.5 28.8 / 1.9

CIFAR10
÷

iSUN 95.6 / 0.1 95.6 / 0 95.4 / 0 93.6 / 0.1 15.1 / 0.1 13.6 / 0.5 16.1 / 0.2 25.1 / 0.2

Tiny (res) 95.5 / 0.1 95.2 / 0.1 95.1 / 0.1 93.5 / 0 14.7 / 0.3 14.8 / 0.5 17.1 / 0.4 25.6 / 0.3

Table 2. Results in terms of mean / standard deviation.
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I
Thanks for your attention.

See you soon at the poster session.
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Supplementary: Optimal (Oracle) Discriminator

I E =∆ 1[Y ä fDn
(X)] denotes the error variable corresponding to fDn

I x 2 X and y 2 Y drawn from the unknown distribution pXY

I pXY (x; y) � PE (1)pXY jE (x; y j1) +PE (0)pXY jE (x; y j0)

I pX (x) � PE (1)pX jE (xj1) +PE (0)pX jE (xj0)

I Pe(x) =∆ E[E (x)jx] = 1xPY jX (fDn
(x)jx) is the probability of error

classification w.r.t. PY jX

D(x; 
) = 1[pX jE (xj1) > 
 y pX jE (xj0)]

= 1[PE jX (1jx)PE (0) > 
 y (1xPE jX (1jx))PE (1)]

= 1[Pe(x)PE (0) > 
 y (1xPe(x))PE (1)]

= 1[Pe(x) > 
 0 y (1xPe(x))];

where 
 0 = PE (1)
PE (0) .
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