w r

Learning o5 2
-
SystemsLab P

Best of Both Worlds: Practical and
Theoretically Optimal Submodular
Maximization in Parallel

Yixin Chen, Tonmoy Dey, Alan Kuhnle
Department of Computer Science
Florida State University

Submodularity

Can be defined as a property of a function where:

U area(s)

sES

e Given an objective function f(S) =

1! P

~

=L

— |

A =[51,52]

J(AUS*) —f(A)

Submodularity

Can be defined as a property of a function where:

U area(s)

sES
° The marginal gain of adding an element to a set diminishes with increase in size of the set

| 1P ‘1TLHJ*CDJH 8

J_—

e Given an objective function f(S) =

/
/

)

fo L

= [S1,52] B =1[51,52.53]

fAAUS*) -f(A) = f(BUS*)—f(B)

Monotonicity

A function f: 2V = R is monotone if :

* foreveryA CB CV,f(A) < f(B)
« Or, foreveryA C Vande €V
- itholds that A(e | A) > 0

Submodular Maximization - Cardinality Constraint

[lp \|| [T \|
|] > . \w* B e i
- - b - ;L
. = : . L
» 5 [1. !
T , ; | T ,
Y - S N[(O e

Given a cardinality constraint k
Objective: Maximize the coverage function with no more than k elements:
i.e Maximize f(S), subject to |S| = k

Submodular Maximization - Performance Metrics

e Metrics

@)

(@)

(@)

Approximation Ratio:
m the minimal ratio of the solution to the optimal result

Query Complexity:
m total number of query calls
Adaptivity:
m Introduced by Balskanski and Singer' for submodular
optimization
B Defined as the minimal number of sequential rounds

required to achieve a constant factor approximation
when polynomially-many queries can be executed in
parallel at each round.

m It is the metric used to define how efficiently the
algorithm can parallelize each iteration

Adaptive Round 1

4
)

L A@lS)

y-1

Gy

Adaptive Round 2

Update §
»

4
)

Aal$)= fSUa)-f(5)

A1

Gy

L M) —

Aal$)= fSua)-f(S)

Update §

e

Final Adaptive Round

[1] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In ACM SIGACT Symposium on
Theory of Computing (STOC), 2018.

Aal$)= fSua)-f(S)

Final Solution

Related Work

e Optimal ratio: 1—-1/e
e Lower bound of query complexity?: Q(n)
e Lower bound of adaptivity®: Q(log(n)/loglog(n))

[1]1 G L Nemhauser and L A Wolsey. Best Algorithms for Approximating the Maximum of a Submodular Set Function. Mathematics of
Operations Research, 3(3):177-188, 1978.

[2] Alan Kuhnle. Quick Streaming Algorithms for Maximization of Monotone Submodular Functions in Linear Time. In Atrtificial
Intelligence and Statistics (AISTATS), 2021.

[3] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In ACM SIGACT Symposium on
Theory of Computing (STOC), 2018.

Related Work

e Several previous works get nearly theoretically optimal result
e Impractical with large constant factors

Reference Ratio Adaptivity Queries

Ene and Nguyen [14] 1-1/e—c¢ O (25 log(n) O (npoly(logn,1/¢))
Chekuri and Quanrud [11] (RPG) 1—-1/e—¢ O (22 log(n)) 1 O (& log(n)) 1
Fahrbach et al. [17] (BSM) 1-1/e—¢t O (% log (n) O (% loglogk) 1
Fahrbach et al. [17] (SM) 1-1/e—ef O ?—2 log (n) ' O(s 10g(1/€)) T
Breuer et al. [9] (FAST) 1-1/e—eti O(zlog(n)log” (*£7)) O(&log(~%LY))
LS+PGB [Theorem 3] 1-1/e—c¢ O (2 log (n/e)) O(&%) 1

T indicates the result holds with constant probability or in expectation;
I indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)

Related Work - FAST"

e speed up the algorithms using the adaptive sequencing technique
e Sacrifice the theoretical guarantee
e Significantly, no ratio for k < 850

Reference Ratio Adaptivity Queries

Ene and Nguyen [14] 1-1/e—c¢ O (25 log(n) O (npoly(logn,1/¢))
Chekuri and Quanrud [11] (RPG) 1—-1/e—¢ O (22 log(n)) 1 O (& log(n)) 1
Fahrbach et al. [17] (BSM) 1-1/e—¢t O (% log (n) O (% loglogk) 1
Fahrbach et al. [17] (SM) 1-1/e—ef O ?—2 log (n) ' O(s 10g(1/€)) T
Breuer et al. [9] (FAST) 1-1/e—eti O(zlog(n)log” (%)) O(&log(~%7))
LS+PGB [Theorem 3] 1-1/e—c¢ O (2 log (n/e)) O(&%) 1

T indicates the result holds with constant probability or in expectation;
I indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)

[1]1 Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on
Machine Learning (ICML), 2019.

Our Main Algorithm - LS+PGB

e Provides theoretical guarantee for all k values
e Empirically outperforms, in terms of runtime, adaptivity, total

queries, and objective values, the previous state-of-the-art algorithm
FAST (Breuer et al.)

Reference Ratio Adaptivity Queries

Ene and Nguyen [14] 1-1/e—c¢ O (25 log(n) O (npoly(logn,1/¢))
Chekuri and Quanrud [11] (RPG) 1—1/e—¢ O (22 log(n)) 1 O (& log(n)) 1
Fahrbach et al. [17] (BSM) 1-1/e—et O (% log (n) O (% loglogk) 1
Fahrbach et al. [17] (SM) 1-1/e—ef 0 ?—2 log (n) O (& log(1/¢)) t
Breuer et al. [9] (FAST) 1-1/e—ct1 O(Llog(m)log” (“52)) 0 (2 log (&)
LS+PGB [Theorem 3] 1-1/e—c¢ O (2 log (n/e)) O(&%) 1

T indicates the result holds with constant probability or in expectation;
I indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)

Contributions

e LinearSeq: obtains a constant ratio ¢+0()™ in expectedo(n)
query complexity and O (log(rn)) adaptivity with probability 1 -1/
o Modified: achieves 0 (log(n/k)) adaptivity with sacrificing the ratio to
be (5+0 (€)™

Contributions

e LinearSeq: obtains a constant facto ¢+0())™ in expectedo(n)
query complexity and O (log(rn)) adaptivity with probability 1 -1/
o Modified: achieves 0 (log(n/k)) adaptivity with sacrificing the ratio to
be (5+0 (€)™
e ThresholdSeq: the average marginal gain is larger than a specified
threshold with probability1 — 1/n in expectedo (n) query complexity and
adaptive rounds O (log(n))

Contributions

e LinearSeq: obtains a constant facto ¢+0())™ in expectedo(n)

query complexity and O (log(n)) adaptivity with probability 1 -1/n
o Modified: achieves 0 (log(n/k)) adaptivity with sacrificing the ratio to
be (5+0 (€)™

e ThresholdSeq: the average marginal gain is larger than a specified
threshold with probability1 — 1/n in expectedo (n) query complexity and
adaptive rounds O (log(n))

e LS+PGB: uses LinearSeq as preprocessing algorithm and combines
ThresholdSeq with boost mechanism; obtains nearly the optimal result

Highly adaptive linear-time algorithm - 7 ratio

Algorithm 2 Highly Adaptive Linear-Time Algorithm

1: Input: evaluation oracle f : 2 — R, constraint k
2: Initialize A < ()

3: for u € N do

4: if A(u|A) > f(A)/k then

5: A AU {u}

6: return A’ < {last k elements added to A}

e Use f(A)/k as threshold to ensure that:
o The last k elements in A contain a constant fraction of the value f(A)
o f(A) is within a constant fraction of OPT

e Totally 2n query calls and n adaptive rounds

Highly adaptive linear-time algorithm - 7 ratio

Algorithm 2 Highly Adaptive Linear-Time Algorithm

Problem: How to parallelize this

; . : . N + :
1: Input: evaluation oracle f : 2°¥ — R™, constraint k algorithm to a lowly adaptive version

. Initialize A « 0

:2;; for uc N do without loss much of approximation
P if A (u| A) > f (A) /k then ratio and query complexity

5: A AU {u}

6: return A’ < {last k elements added to A}

e Use f(A)/k as threshold to ensure that:
o The last k elements in A contain a constant fraction of the value f(A)
o f(A) is within a constant fraction of OPT

e Totally 2n query calls and n adaptive rounds

LinearSeq
- Yaratio, O(n) query and O(log n) adaptive complexity

Algorithm 1 The algorithm that obtains ratio (4 + O (¢)) ™" in O (log(n)/e?) adaptive rounds and
expected O (n/e3) queries.

1: procedure LINEARSEQ(f, N, k, €)
2: Input: evaluation oracle f : 2V — R*, constraint k, error &

3: a=argmaxuen f({u}) _
4 Initialize A « {a},V < N, £ = [4(1+1/(Be))log(n)], B =¢/(161og(8/(1 —e~</2))) @ filter out the
5 for 7 < 1to/ do .
6: Update V < {x € V : A(z| A) > f(A)/k} and filter out the rest elements with small
7: if [V = 0 then break ' i
8: V ={v1,v2,...,vv|} +random-permutation(V) marglnal gains
9: A—{l(1+e)]:1<|(1+¢€)*] <k,ueN}
U{|k + uek] : |k +uek] < |V],u € NJU{|V|}

10: B[)\;] = false, for \; € A
11; for \; € A in parallel do
12: Ty, {’Ul,’UQ, e U)w—l} s T, {’U],’Ug, Sis ,’U)“.} ¥ T;\i — T \T,_,
13: if A (T}, |AUTy,_,) /|IT5,| = (1 —€)f(AUTx,_,)/k then B[);] true
14: A"+ max{\; € A : B[\;] = false and ((A\; < k and B[1] to B[A;_1] are all true) or

(A > kand 3m > 1s.t. |UiZ), T4 | > k and B[\ to B[);_1] are all true))}
15: A AUT)-

16: if |V| > 0 then return failure
17: return A’ < last k elements added to A

LinearSeq
- Yaratio, O(n) query and O(log n) adaptive complexity

Algorithm 1 The algorithm that obtains ratio (4 + O (¢)) ™" in O (log(n)/e?) adaptive rounds and
expected O (n/e3) queries.

1: procedure LINEARSEQ(f, N, k, €)
2: Input: evaluation oracle f : 2V — R*, constraint k, error &

3 a=argmaxuen f({u})
4 TInitialize A {a},V « N, €= [4(1 +1/(Be)) log(n)], B =¢/(1610g(8/(1 —e~*/2))) @ get a randomly
5 for j < 1to/ do
6 UpdateV < {z €V :A(|A)> f(A)/k} and filter out the rest selected sequence
7 if |V'| = 0 then break
8: V ={v1,v2,...,vv|} ¢ - random-permutation(V")
9: A—{l(1+e)*]:1<|(1+¢€)*] <k,u€e N}
U{|k + uek] : |k +uek] < |V],u € NJU{|V|}

10: B[)\;] = false, for \; € A
11; for \; € A in parallel do
12: T)\i_l — {’Ul,’UQ, s e U)w—l} ;T)\i — {’U],’Ug, SiEh ,’U)“.} : T;\i — T/\i\TM—1
13: if A (T}, |AUTy,_,) /|IT5,| = (1 —€)f(AUTx,_,)/k then B[);] true
14: A* « max{\; € A : B[)\;] = false and ((\; < k and B[1] to B[\;_1] are all true) or

(A > kand 3m > 1s.t. |UiZ), T4 | > k and B[\ to B[);_1] are all true))}
15: A AUT)-

16: if |V| > 0 then return failure
17: return A’ < last k elements added to A

LinearSeq
- Yaratio, O(n) query and O(log n) adaptive complexity

Algorithm 1 The algorithm that obtains ratio (4 + O (¢)) ™" in O (log(n)/e?) adaptive rounds and
expected O (n/e3) queries.

1: procedure LINEARSEQ(f, N, k, €)

2:

0 007 oy bl W)

14:

15:

16:
17:

Input: evaluation oracle f : oN R™, constraint k, error £
a = argmaxyen f({u})
Initialize A < {a},V « N, £ = [4(1 +1/(Be))log(n)], B = €/(16log(8/(1 — e~5/2)))
for j < 1to/ do
Update V < {z € V : A(z| A) > f(A)/k} and filter out the rest
if |V'| = 0 then break
V={vi,vo,..., vy} <—random-permutation(V")
A—{l(1+e)]:1<|(1+¢€)*] <k,ueN}
U{|k + uek] : |k + uek] < |V|,u € N}U{|V|}
B|A;] = false, for A\; € A
for \; € A in parallel do
T)\i_l — {’U1,’U2, $ S U)w—l} ;T)\i — {’U],’Ug, A ,’U)“.} 3 T;\i — T/\i\TM—1
if A (T}, |AUTy,_,) /|IT5,| = (1 —€)f(AUTx,_,)/k then B[);] true

A"+ max{\; € A : B[\;] = false and ((A\; < k and B[1] to B[A;_1] are all true) or

(A > kand 3m > 1s.t. |UiZ), T4 | > k and B[\ to B[);_1] are all true))}

A AUT)-

if [V| > 0 then return failure
return A’ < last k elements added to A

split V' into blocks to
reduce the query
calls

LinearSeq
- Yaratio, O(n) query and O(log n) adaptive complexity

Algorithm 1 The algorithm that obtains ratio (4 + O (¢)) ™" in O (log(n)/e?) adaptive rounds and
expected O (n/e3) queries.

1: procedure LINEARSEQ(f, N, k, €)
2: Input: evaluation oracle f : 2V — R*, constraint k, error &

3: a=argmaxuen f({u}) _
4 Initialize A < {a},V + N, €=[4(1+1/(Be))log(n)], B =¢/(1610g(8/(1—e~*/?))) @ check the marginal
5 for j < 1to/ do . .
6: Update V < {z € V : A(z| A) > f(A)/k} and filter out the rest gain of each block in
7 if |V'| = 0 then break
8: V ={v1,v2,...,vv|} +random-permutation(V) para”el
9: A—{l(1+e)]:1<|(1+¢€)*] <k,ueN}
U{|k + uek] : |k +uek] < |V],u € NJU{|V|}

10: B[)\;] = false, for \; € A
11; for \; € A in parallel do
12: Ty, {’Ul,’UQ, e U)w—l} s T, {’U],’Ug, Sis ,’U)“.} ¥ T;\i — T \T,_,
13: if A (T}, |AUTy,_,) /|IT5,| = (1 —€)f(AUTx,_,)/k then B[);] true
14: A" < max{A; € A : B[\;| = false and ((A\; < k and B[1] to B|A;_1| are all true) or

(A > kand 3m > 1s.t. |UiZ), T4 | > k and B[\ to B[);_1] are all true))}
15: A AUT)-

16: if |V| > 0 then return failure
17: return A’ < last k elements added to A

LinearSeq

- Yaratio, O(n) query and O(log n) adaptive complexity

Algorithm 1 The algorithm that obtains ratio (4 + O (¢)) ' in O (log(n)/e?) adaptive rounds and
expected O (n/e3) queries.

1: procedure LINEARSEQ(f, N, k, €)
2: Input: evaluation oracle f : 2V — R*, constraint k, error &

33 a=argmaxyen f({u})
4: Initialize A < {a},V < N, £ = [4(1 + 1/(B¢))log(n)], B = ¢/(161og(8/(1 — e~¢/2)))
5 for j < 1to/ do
6: Update V < {z € V : A(z| A) > f(A)/k} and filter out the rest
7 if |V'| = 0 then break
8: V = {v1,v2,...,9v|} <random-permutation(V’)
9: A—{l(Q1+e)*]:1<|(1+€)*] <kueN}
U{|k + uek] : |k +uek]| < |V|,u e NJU{|V|}
10: B[)\;] = false, for \; € A
11z for \; € A in parallel do
12: T)\i_l — {’Ul,’UQ, s e ’U)u._l} ;T)H — {'U],'U2, SiEh "UM} : T;‘i — T/\i\TM—1
13: if A (T}, |AUTy,_,) /|ITx,| > (1 —€)f(AUTy,_,)/k then B[);] < true
14: A* « max{\; € A: and ((A; < k and B[1] to B[\;_1] are all true) or

(Ai > kand 3m > 1s.t. [U;Z, T, | > k and B[Ap] to B[A;_1] are all true))}
15: A AUT)-
16: if |V| > 0 then return failure
17: return A’ < last k elements added to A

e prefix selection

(@)

ensure that the
selected subset
obtains large
marginal gain

ensure that an
e/2-fraction of V can
be filtered out at next
iteration with high
probability

ThresholdSeq
- O(n) query and O(log n) adaptive complexity

Algorithm 3 A Parallelizable Greedy Algorithm for Fixed Threshold 7

1: procedure THRESHOLDSEQ(f, N, k,d,¢,7) ¢ analogous to

2: Input: evaluation oracle f : 2/\} — R, constraint k, revision 4, error €, threshold 7 Linea rseq

3 Initialize A < 0,V < N, £ = [4(1 + 2/¢) log(n/d)]

4 for j < 1to/ do g f(A)/|A|

5 Update V < {z € V :|/A (x| A) > 7} and filter out the rest

6: if V| =0 then >1—-e)r/(1+4¢)

7: return A

8: V < random-permutation(V).

5 s« min{k — |A], [V]} o constant thresholld T

1(1): geat(lﬂ)ﬂ 1< [(L+¢e)*] <s,ueN}U{s} e much simpler while
. o . :

12: for \; € A in parallel do Only consider the first

13: Ty, + {v1,v2,...,05} i _

14: if A (T, | A) /|Tx;| > (1 — €)7 then mln{k |A|’|Vl}

15: B« BU{\} elements

16: A < min{\; € A: \; > b,Vb € B} =

17 A AUT. o stop when |A[=k

18: if |[A| =k then

19: return A

20: return failure

LS+PGB
- 1-1/e ratio, O(n) query and O(log n) adaptive complexity

Algorithm 4 A Parallelizable Greedy Algorithm to Boost to the Optimal Ratio.

1: procedure PARALLELGREEDYBOOST(f, N, k, o, T, €)

2:

(o

@ND. 001 OviCA i:i0)

Input: evaluation oracle f : N R, constraint k, constant «, value I" such that I' <
f(O) <T'/a,error e
Initialize 7 < ['/(ak), § « 1/(log;_.(/3) + 1), A« 0
while 7 > I'/(3k) do
T 7(l—¢)
S < THRESHOLDSEQ(fa,N,k — |A|,d,e/3,7)
A+~ AUS
if |A| = k then
return A
return A

Use LinearSeq as
preprocessing algorithm to
get an a-approximation
solution I’

I' and « are used to
produce an initial threshold
value

The threshold value is
iteratively decreased by
the factor (1-¢)

Empirical Results - Environment Setup

The experiments are conducted on a server running Ubuntu 20.04.2 with kernel 5.8.0

The hardware of the system consists of 40 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz cores
with 75 threads made available to the algorithms for the experiments.

All algorithms were implemented using Open-MPI and mpi4py library

The experiments were performed across six applications with groundset size ranging from
1,885 - 100,000 and K values ranging from 0.1% - 10% of groundset.

For evaluation, the metrics of total time, total queries, adaptive rounds and objective value
were used for comparison.

Our algorithm (LS+PGB) is compared to the previous state-of-art algorithm FAST".

[1] Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on Machine
Learning (ICML), 2019.

Empirical Results - Objective Value

MaxCover(BA) (n=100000)

-§‘ 1.0 ¥--¥-V-N-¥
o oy ¥
;™
U]
~0.8
o
2
el
o
20.6 FAST
'8 - LS+PGB
103 102 101
k/n

RevenueMax (n=17432)

>
3 1.0- v V-V Vuy,,
9 \ oo Yoy
(™
G
~0.8
o
2
el
J
20.6 FAST
-°° -§- LS+PGB
103 102 101

kin

ImageSumm (n=10000)

5 1.0
g ' VNNV V-Y
g
L)
~ 0.8
]
2
ed
W
2o.6 FAST
-°° -§- LS+PGB
103 102 10~
k/n

TwitterSumm (n=42055

)

1.0- Y VV NN
2 e
g
QO
~0.8
Q
2
e
U
2o.6 FAST
3 ¥- LS+PGB

1073 10-2 10-
k/n

L

TrafficMonitor (n=1885)

%‘1_0— FAST
0 -§- LS+PGB
g
(G
~0.8
[
2
ed
]
-_E-O.G
(@)
103 102 101
kin

InfluenceMax (n=26588)

>
10 vV E-V-V XN
g
G
~0.8
(]
2
el
J
20.6- FAST
-8 -¥.. LS+PGB
103 10-2 101
k/n

The objective value is normalized by
that of Greedy

Overall LS+PGB either maintains or

outperforms the objective obtained
by FAST across all applications

With the TrafficMonitor and
MaxCover (BA) being the instances
where it exceeds the average
objective value of FAST by 6% and
5% respectively.

Queries / n

Queries / n

Empirical Results - Queries

MaxCover(BA) (n=100000)

[
o
r

10°

10%

FAST
-W- L5+PGB
e
v-¥-vy
103 102 10!
k/n

RevenueMax (n=17432)

FAST
- LS+PGB
'HJM),
103 102 10°1
kin

Queries / n

Queries / n

ImageSumm (n=10000)

FAST
¥ LS+PGB
101
6 x 10°
4 % 10° ‘
103 1072 101
k/in
TwitterSumm (n=42055
101 FAST
Y- L5+PGB
v’
B
10°| v-¥-¥¥
103 102 101
kin

2.75 x 10°%
2.5 x 100
g 2.25x 100 ¥ Ls+PcB

2 x 10
1.75 x 10%

1.5 x 10°
1.25 x 10°

-~
0
[

=
[
3

o

100.

6 x 10°

T4 x 10°
- 0
g3x10

.52 .
g x 10
(o4

10°

TrafficMonitor (n=1885)

FAST

',,,,
1073

102 101

kin

InfluenceMax (n=26588)
FAST
-¥- LS+PGB
v []
/’

/
/

- ‘/

1073 102 10!
kin

Both FAST and LS+PGB exhibit
a linear scaling behavior with the
increasing k values

Overall on an average LS+PGB
achieves the objective in less
than half the total queries
required by FAST for all of the
applications but TrafficMonitor
and InfluenceMax.

For TrafficMonitor &
InfluenceMax, FAST requires
1.5 and 1.9 times the queries
needed by LS+PGB

Empirical Results - Adaptive Rounds

MaxCover(BA) (n=100000)

(] FAST
= ¥ LS+PGB
3 100
13
[}
2
E‘ 50
1073 1072 107!
k/n
RevenueMax (n=17432)
1] FAST
- 150 ¥ LS+PGB
3
[]
&€ 100-
@
2
2 50
©
-
1073 1072 10-1
kin

ImageSumm (n=10000)

L FAST

280 .y s+pcs

=3

’_9‘ 60

Sa0

2

s 20

2 M

0
103 102 10-1
kin

TwitterSumm (n=42055

L FAST

-§ 200! ¥ LS+PGB

(=]

e

(]

2100

ol

Y

3

4 v v ¥ v vVvvy

1073

102
k/n

10°

Adaptive Rounds

TrafficMonitor (n=1885)

0 7 FAST v
2 W Ls+PGB /
36 f vy
-4
o5)
2 /
24 o
g. J
a3V

1073 1072 101

k/n

12InﬂuenceMax {(n=26588)

FAST
10 ¥ LS+PGB
...... v_'

8 VA vy
\ 4

6

4
103 102 10!

kin

LS+PGB exhibits a very good
scaling behavior with the increasing
k values with at most 5 fold
increase in adaptive rounds with
100 fold increase in k value.

Overall on an average FAST
requires more than 3.5 times the
adaptive rounds needed by
LS+PGB to achieve the objective.

For MaxCover, RevenueMax,
TwitterSumm and ImageSumm
FAST requires 3.5, 4.3, 4.8 and 7.2
times more adaptive rounds.

Empirical Results - Time Taken

Time Taken (s)

MaxCover(BA) (n=100000) ImageSumm (n=10000) TrafficMonitor (n=1885)
~103: FAST - FAST ~ 109 FAST o Both lgorith hibit i
g v LS+PGB & v LS+PGB 3 v LS+PGB (0] agOFI ms exniol inear
E -4 E 101 £ scaling of runtime with k
102. v % -
f - 7 f £ 101 e On many instances, LS+PGB is
£ ! X £ 10° g faster by more than an order of
£ ol E £
L0 v /v/v = - magnitude
1073 1072 107! 1073 102 10-1 =3 -2 -1
k/n kin 10 ,i?n 107" ¢ Overall on an average FAST
requires almost 4.8 times the time
RevenueMax (n=17432) TwitterSumm (n=42055 InfluenceMax (n=26588) needed by LS+PGB to achieve the
10° [oF = |'W Fast 101 FAST objective
W LS+PGB n | -¥- LS+PGB ‘UT W LS+PGB Y .
2 o f
10 § X E /'f e For TwitterSumm, MaxCover,
10! © 10 I ; RevenueMax and ImageSumm
Lo? £ z FAST is on average 4.6, 4.7, 6.8
F - £ 100 and 19.2 times slower than
10-3 10-2 101 6-2 {62 154 [i LS+PGB.
kin K/n 1073 102 107t

kin

Empirical Results - Overall Result

Runtime (s) Objective Value Queries
Application FAST LS+PGB FAST LS+PGB FAST LS+PGB
TrafficMonitor 3.7 x 107} 21 x 107 47x 108 50x10® 35x10° 24 x10°
InfluenceMax 4.4 x10° 23x10° 1.1x10® 1.1x10® 7.7x10* 4.0 x 10*
TwitterSumm 1.6 x 100 35x10° 38x10° 3.8x10° 1.5x10° 6.2x10*
RevenueMax 39x 102 54x10" 14x10* 1.4x10* 7.6x10* 2.7x10°
MaxCover (BA) 3.7x 102 7.6x10' 6.0x10* 63x10* 58x10° 1.8x 10°
ImageSumm 1.6 x 100 81x10" 9.1x10° 9.1x10° 1.3x10° 4.8x10*

Conclusion

e In this paper, we made the following contributions:
o Theoretical

m LinearSeq: A constant-factor algorithm for SM with smaller adaptivity than any previous
algorithm, especially for values of k that are large relative to n.

m ThresholdSeq: An algorithm that adds elements that have a gain of a specified threshold
with expected linear query complexity and logarithmic adaptive rounds.

m LS+PGB: An parallelized greedy algorithm which is used in conjunction with LinearSeq and
ThreshoulSeq. It obtains nearly the optimal result, in terms of ratio, adaptivity and query
complexity.

o Empirical
m LS+PGB is faster than the state-of-art algorithm FAST in an extensive empirical evaluation.

