

Best of Both Worlds: Practical and Theoretically Optimal Submodular Maximization in Parallel

Yixin Chen, Tonmoy Dey, Alan Kuhnle Department of Computer Science Florida State University

Submodularity

Can be defined as a property of a function where:

• Given an objective function $f(S) = \left| \bigcup_{s \in S} area(s) \right|$

Submodularity

Can be defined as a property of a function where:

- Given an objective function $f(S) = \left| \bigcup_{s \in S} area(s) \right|$
- The marginal gain of adding an element to a set diminishes with increase in size of the set

Monotonicity

A function $f: 2^V \to \mathbb{R}$ is monotone if:

- for every $A \subseteq B \subseteq V$, $f(A) \le f(B)$
- Or, for every $A \subseteq V$ and $e \in V$
- it holds that $\Delta(e \mid A) \geq 0$

Submodular Maximization - Cardinality Constraint

Given a cardinality constraint **k**

Objective: Maximize the coverage function with no more than k elements:

i.e Maximize f(S), subject to $|S| \le k$

Submodular Maximization - Performance Metrics

Metrics

- Approximation Ratio:
 - the minimal ratio of the solution to the optimal result
- Query Complexity:
 - total number of query calls
- Adaptivity:
 - Introduced by Balskanski and Singer¹ for submodular optimization
 - Defined as the minimal number of sequential rounds required to achieve a constant factor approximation when polynomially-many queries can be executed in parallel at each round.
 - It is the metric used to define how efficiently the algorithm can parallelize each iteration

[1] Eric Balkanski and Yaron Singer. **The adaptive complexity of maximizing a submodular function.** In ACM SIGACT Symposium on Theory of Computing (STOC), 2018.

Related Work

- Optimal ratio¹: 1 1/e
- Lower bound of query complexity²: $\Omega(n)$
- Lower bound of adaptivity³: $\Omega(\log(n)/\log\log(n))$

^[1] G L Nemhauser and L A Wolsey. **Best Algorithms for Approximating the Maximum of a Submodular Set Function.** Mathematics of Operations Research, 3(3):177–188, 1978.

^[2] Alan Kuhnle. Quick Streaming Algorithms for Maximization of Monotone Submodular Functions in Linear Time. In Artificial Intelligence and Statistics (AISTATS), 2021.

^[3] Eric Balkanski and Yaron Singer. **The adaptive complexity of maximizing a submodular function.** In ACM SIGACT Symposium on Theory of Computing (STOC), 2018.

Related Work

- Several previous works get nearly theoretically optimal result
- Impractical with large constant factors

Reference	Ratio	Adaptivity	Queries	
Ene and Nguyen [14] Chekuri and Quanrud [11] (RPG) Fahrbach et al. [17] (BSM) Fahrbach et al. [17] (SM)	$egin{array}{l} 1-1/e-arepsilon \ 1-1/e-arepsilon \ 1-1/e-arepsilon \ 1-1/e-arepsilon \ \end{array}$	$egin{array}{c} O\left(rac{1}{arepsilon_{2}^{2}}\log(n) ight) \ O\left(rac{1}{arepsilon_{2}^{2}}\log(n) ight) \dagger \ O\left(rac{1}{arepsilon_{2}^{2}}\log\left(n ight) ight) \ O\left(rac{1}{arepsilon_{2}^{2}}\log\left(n ight) ight) \end{array}$	$O\left(n \mathrm{poly}(\log n, 1/arepsilon) ight) \ O\left(rac{n}{arepsilon^4}\log(n) ight) \dagger \ O\left(rac{n}{arepsilon^3}\log\log k ight) \dagger \ O\left(rac{n}{arepsilon^3}\log(1/arepsilon) ight) \dagger$	
Breuer et al. [9] (FAST)	$1-1/e-\varepsilon$ † ‡	$O\left(rac{1}{arepsilon^2}\log(n)\log^2\left(rac{\log(k)}{arepsilon} ight) ight)$	$O\left(\frac{n}{\varepsilon^2}\log\left(\frac{\log(k)}{\varepsilon}\right)\right)$	
LS+PGB [Theorem 3]	$1-1/e-\varepsilon$	$O\left(\frac{1}{arepsilon^2}\log\left(n/arepsilon ight) ight)$	$O\left(\frac{n}{\varepsilon^2}\right)\dagger$	

[†] indicates the result holds with constant probability or in expectation;

[‡] indicates the result does not hold on all instances of SM;

while no symbol indicates the result holds with probability greater than 1-O(1/n)

Related Work - FAST¹

- speed up the algorithms using the adaptive sequencing technique
- Sacrifice the theoretical guarantee
- Significantly, no ratio for k < 850

Reference	Ratio	Adaptivity	Queries	
Ene and Nguyen [14] Chekuri and Quanrud [11] (RPG) Fahrbach et al. [17] (BSM) Fahrbach et al. [17] (SM)	$1-1/e-arepsilon \ 1-1/e-arepsilon \ 1-1/e-arepsilon \dagger \ 1-1/e-arepsilon \dagger$	$egin{array}{c} O\left(rac{1}{arepsilon_1^2}\log(n) ight) \ O\left(rac{1}{arepsilon_2^2}\log(n) ight) \ O\left(rac{1}{arepsilon_2^2}\log(n) ight) \ O\left(rac{1}{arepsilon_2^2}\log(n) ight) \end{array}$	$egin{aligned} O\left(npoly(\log n, 1/arepsilon) ight) \ O\left(rac{n}{arepsilon^4}\log(n) ight) \ + \ O\left(rac{n}{arepsilon^3}\log\log k ight) \ + \ O\left(rac{n}{arepsilon^3}\log(1/arepsilon) ight) \end{aligned}$	
Breuer et al. [9] (FAST)	$1-1/e-\varepsilon$ † ‡	$O\left(rac{1}{arepsilon^2}\log(n)\log^2\left(rac{\log(k)}{arepsilon} ight) ight)$	$O\left(\frac{n}{\varepsilon^2}\log\left(\frac{\log(k)}{\varepsilon}\right)\right)$	
LS+PGB [Theorem 3]	$1-1/e-\varepsilon$	$O\left(\frac{1}{arepsilon^2}\log\left(n/arepsilon ight) ight)$	$O\left(rac{n}{arepsilon^2} ight)\dagger$	

[†] indicates the result holds with constant probability or in expectation;

[‡] indicates the result does not hold on all instances of SM;

while no symbol indicates the result holds with probability greater than 1-O(1/n)

^[1] Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on Machine Learning (ICML), 2019.

Our Main Algorithm - LS+PGB

- Provides theoretical guarantee for all k values
- Empirically outperforms, in terms of runtime, adaptivity, total queries, and objective values, the previous state-of-the-art algorithm FAST (Breuer et al.)

Reference	Ratio	Adaptivity	Queries
Ene and Nguyen [14]	$1-1/e-\varepsilon$	$O\left(\frac{1}{arepsilon_1^2}\log(n)\right)$	$O(n \operatorname{poly}(\log n, 1/\varepsilon))$
Chekuri and Quanrud [11] (RPG)	$1-1/e-\varepsilon$	$O\left(\frac{1}{arepsilon_1^2}\log(n)\right)$ †	$O\left(\frac{n}{\varepsilon^4}\log(n)\right)\dagger$
Fahrbach et al. [17] (BSM)	1-1/e-arepsilon†	$O\left(\frac{1}{arepsilon_{i}^{2}}\log\left(n ight) ight)$	$O\left(rac{n}{arepsilon^3}\log\log k ight)$ †
Fahrbach et al. [17] (SM)	1-1/e-arepsilon †	$O\left(\frac{1}{arepsilon^2}\log\left(n ight) ight)$	$O\left(rac{n}{arepsilon^3}\log(1/arepsilon) ight)\dagger$
Breuer et al. [9] (FAST)	$1-1/e-\varepsilon$ † ‡	$O\left(rac{1}{arepsilon^2}\log(n)\log^2\left(rac{\log(k)}{arepsilon} ight) ight)$	$O\left(\frac{n}{\varepsilon^2}\log\left(\frac{\log(k)}{\varepsilon}\right)\right)$
LS+PGB [Theorem 3]	$1-1/e-\varepsilon$	$O\left(rac{1}{arepsilon^2}\log\left(n/arepsilon ight) ight)$	$O\left(\frac{n}{\varepsilon^2}\right)\dagger$

[†] indicates the result holds with constant probability or in expectation;

[‡] indicates the result does not hold on all instances of SM; while no symbol indicates the result holds with probability greater than 1-O(1/n)

Contributions

- **LinearSeq**: obtains a constant ratio $(4 + O(\varepsilon))^{-1}$ in expected O(n) query complexity and $O(\log(n))$ adaptivity with probability 1 1/n
 - O Modified: achieves $O(\log(n/k))$ adaptivity with sacrificing the ratio to be $(5 + O(\varepsilon))^{-1}$

Contributions

- **LinearSeq**: obtains a constant facto $(4 + O(\varepsilon))^{-1}$ in expected O(n) query complexity and $O(\log(n))$ adaptivity with probability 1 1/n
 - O Modified: achieves $O(\log(n/k))$ adaptivity with sacrificing the ratio to be $(5 + O(\varepsilon))^{-1}$
- ThresholdSeq: the average marginal gain is larger than a specified threshold with probability 1-1/n in expected O(n) query complexity and adaptive rounds $O(\log(n))$

Contributions

- **LinearSeq**: obtains a constant facto $(4 + O(\varepsilon))^{-1}$ in expected O(n) query complexity and $O(\log(n))$ adaptivity with probability 1 1/n
 - Modified: achieves $O(\log(n/k))$ adaptivity with sacrificing the ratio to be $(5 + O(\varepsilon))^{-1}$
- ThresholdSeq: the average marginal gain is larger than a specified threshold with probability 1-1/n in expected O(n) query complexity and adaptive rounds $O(\log(n))$
- **LS+PGB**: uses LinearSeq as preprocessing algorithm and combines ThresholdSeq with boost mechanism; obtains nearly the optimal result

Highly adaptive linear-time algorithm - 1/4 ratio

Algorithm 2 Highly Adaptive Linear-Time Algorithm

- 1: **Input:** evaluation oracle $f: 2^{\mathcal{N}} \to \mathbb{R}^+$, constraint k
- 2: Initialize $A \leftarrow \emptyset$
- 3: for $u \in \mathcal{N}$ do
- if $\Delta(u \mid A) \ge f(A)/k$ then $A \leftarrow A \cup \{u\}$
- 6: **return** $A' \leftarrow \{ \text{last } k \text{ elements added to } A \}$
- Use f(A)/k as threshold to ensure that:
 - The last *k* elements in *A* contain a constant fraction of the value *f*(*A*)
 - f(A) is within a constant fraction of OPT
- Totally 2*n* query calls and *n* adaptive rounds

Highly adaptive linear-time algorithm - 1/4 ratio

Algorithm 2 Highly Adaptive Linear-Time Algorithm

- 1: **Input:** evaluation oracle $f: 2^{\mathcal{N}} \to \mathbb{R}^+$, constraint k
- 2: Initialize $A \leftarrow \emptyset$
- 3: for $u \in \mathcal{N}$ do
- if $\Delta(u \mid A) \ge f(A)/k$ then $A \leftarrow A \cup \{u\}$
- 6: **return** $A' \leftarrow \{ \text{last } k \text{ elements added to } A \}$

Problem: How to parallelize this algorithm to a lowly adaptive version without loss much of approximation ratio and query complexity

- Use f(A)/k as threshold to ensure that:
 - The last *k* elements in *A* contain a constant fraction of the value *f*(*A*)
 - f(A) is within a constant fraction of OPT
- Totally 2*n* query calls and *n* adaptive rounds

- $\frac{1}{4}$ ratio, O(n) query and $O(\log n)$ adaptive complexity

Algorithm 1 The algorithm that obtains ratio $(4 + O(\varepsilon))^{-1}$ in $O(\log(n)/\varepsilon^3)$ adaptive rounds and expected $O(n/\varepsilon^3)$ queries.

```
1: procedure LINEARSEQ(f, \mathcal{N}, k, \varepsilon)
             Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, error \varepsilon
  3:
             a = \arg\max_{u \in \mathcal{N}} f(\{u\})
             Initialize A \leftarrow \{a\}, V \leftarrow \mathcal{N}, \ell = \lceil 4(1+1/(\beta\varepsilon))\log(n) \rceil, \beta = \varepsilon/(16\log(8/(1-e^{-\varepsilon/2})))
  4:
             for i \leftarrow 1 to \ell do
                    Update V \leftarrow \{x \in V : \Delta(x \mid A) \ge f(A)/k\} and filter out the rest
  6:
                   if |V| = 0 then break
  7:
                    V = \{v_1, v_2, \dots, v_{|V|}\} \leftarrow \mathbf{random\text{-}permutation}(V)
                    \Lambda \leftarrow \{ |(1+\varepsilon)^u| : 1 \le |(1+\varepsilon)^u| \le k, u \in \mathbb{N} \}
  9:
                                 \bigcup\{|k+u\varepsilon k|:|k+u\varepsilon k|\leq |V|,u\in\mathbb{N}\}\cup\{|V|\}
10:
                    B[\lambda_i] = false, for \lambda_i \in \Lambda
                    for \lambda_i \in \Lambda in parallel do
11:
                          T_{\lambda_{i-1}} \leftarrow \{v_1, v_2, \dots, v_{\lambda_{i-1}}\}; T_{\lambda_i} \leftarrow \{v_1, v_2, \dots, v_{\lambda_i}\}; T'_{\lambda_i} \leftarrow T_{\lambda_i} \setminus T_{\lambda_{i-1}}
12:
                          if \Delta \left( T'_{\lambda_i} \mid A \cup T_{\lambda_{i-1}} \right) / |T'_{\lambda_i}| \ge (1 - \varepsilon) f(A \cup T_{\lambda_{i-1}}) / k then B[\lambda_i] \leftarrow true
13:
                    \lambda^* \leftarrow \max\{\lambda_i \in \Lambda : B[\lambda_i] = false and ((\lambda_i \leq k \text{ and } B[1] \text{ to } B[\lambda_{i-1}] \text{ are all true}) \text{ or }
14:
      (\lambda_i > k \text{ and } \exists m \geq 1 \text{ s.t. } |\bigcup_{u=m}^{i-1} T'_{\lambda_u}| \geq k \text{ and } B[\lambda_m] \text{ to } B[\lambda_{i-1}] \text{ are all true})\}
                    A \leftarrow A \cup T_{\lambda^*}
15:
             if |V| > 0 then return failure
16:
             return A' \leftarrow last k elements added to A
17:
```

filter out the elements with small marginal gains

- $\frac{1}{4}$ ratio, O(n) query and $O(\log n)$ adaptive complexity

Algorithm 1 The algorithm that obtains ratio $(4 + O(\varepsilon))^{-1}$ in $O(\log(n)/\varepsilon^3)$ adaptive rounds and expected $O(n/\varepsilon^3)$ queries.

```
1: procedure LINEARSEQ(f, \mathcal{N}, k, \varepsilon)
             Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, error \varepsilon
 3:
             a = \arg\max_{u \in \mathcal{N}} f(\{u\})
             Initialize A \leftarrow \{a\}, V \leftarrow \mathcal{N}, \ell = \lceil 4(1+1/(\beta\varepsilon))\log(n) \rceil, \beta = \varepsilon/(16\log(8/(1-e^{-\varepsilon/2})))
 4:
 5:
             for i \leftarrow 1 to \ell do
 6:
                   Update V \leftarrow \{x \in V : \Delta(x \mid A) \ge f(A)/k\} and filter out the rest
                   if |V| = 0 then break
 7:
                   V = \{v_1, v_2, \dots, v_{|V|}\} \leftarrow \text{-random-permutation}(V)
                    \Lambda \leftarrow \{ |(1+\varepsilon)^u| : 1 \leq |(1+\varepsilon)^u| \leq k, u \in \mathbb{N} \}
 9:
                                \bigcup\{|k+u\varepsilon k|:|k+u\varepsilon k|<|V|,u\in\mathbb{N}\}\cup\{|V|\}
10:
                   B[\lambda_i] = false, for \lambda_i \in \Lambda
                   for \lambda_i \in \Lambda in parallel do
11:
                          T_{\lambda_{i-1}} \leftarrow \{v_1, v_2, \dots, v_{\lambda_{i-1}}\}; T_{\lambda_i} \leftarrow \{v_1, v_2, \dots, v_{\lambda_i}\}; T'_{\lambda_i} \leftarrow T_{\lambda_i} \setminus T_{\lambda_{i-1}}
12:
                          if \Delta \left( T'_{\lambda_i} \mid A \cup T_{\lambda_{i-1}} \right) / |T'_{\lambda_i}| \ge (1 - \varepsilon) f(A \cup T_{\lambda_{i-1}}) / k then B[\lambda_i] \leftarrow true
13:
                    \lambda^* \leftarrow \max\{\lambda_i \in \Lambda : B[\lambda_i] = false and ((\lambda_i \leq k \text{ and } B[1] \text{ to } B[\lambda_{i-1}] \text{ are all true}) \text{ or }
14:
      (\lambda_i > k \text{ and } \exists m \geq 1 \text{ s.t. } |\bigcup_{u=m}^{i-1} T'_{\lambda_u}| \geq k \text{ and } B[\lambda_m] \text{ to } B[\lambda_{i-1}] \text{ are all true})\}
                    A \leftarrow A \cup T_{1*}
15:
             if |V| > 0 then return failure
16:
             return A' \leftarrow last k elements added to A
17:
```

 get a randomly selected sequence

- $\frac{1}{4}$ ratio, O(n) query and $O(\log n)$ adaptive complexity

Algorithm 1 The algorithm that obtains ratio $(4 + O(\varepsilon))^{-1}$ in $O(\log(n)/\varepsilon^3)$ adaptive rounds and expected $O(n/\varepsilon^3)$ queries.

```
1: procedure LINEARSEQ(f, \mathcal{N}, k, \varepsilon)
             Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, error \varepsilon
  3:
             a = \arg\max_{u \in \mathcal{N}} f(\{u\})
             Initialize A \leftarrow \{a\}, V \leftarrow \mathcal{N}, \ell = \lceil 4(1+1/(\beta\varepsilon))\log(n) \rceil, \beta = \varepsilon/(16\log(8/(1-e^{-\varepsilon/2})))
  4:
  5:
             for i \leftarrow 1 to \ell do
  6:
                    Update V \leftarrow \{x \in V : \Delta(x \mid A) \ge f(A)/k\} and filter out the rest
                    if |V| = 0 then break
  7:
                   V = \{v_1, v_2, \dots, v_{|V|}\} \leftarrow \mathbf{random\text{-permutation}}(V)
                   \Lambda \leftarrow \{ |(1+\varepsilon)^u| : 1 \le |(1+\varepsilon)^u| \le k, u \in \mathbb{N} \}
  9:
                                 \bigcup\{|k+u\varepsilon k|: |k+u\varepsilon k| \le |V|, u \in \mathbb{N}\} \cup \{|V|\}
10:
                    B|\lambda_i| = false, for \lambda_i \in \Lambda
                    for \lambda_i \in \Lambda in parallel do
11:
                          T_{\lambda_{i-1}} \leftarrow \{v_1, v_2, \dots, v_{\lambda_{i-1}}\}; T_{\lambda_i} \leftarrow \{v_1, v_2, \dots, v_{\lambda_i}\}; T'_{\lambda_i} \leftarrow T_{\lambda_i} \setminus T_{\lambda_{i-1}}
12:
                          if \Delta \left( T'_{\lambda_i} \mid A \cup T_{\lambda_{i-1}} \right) / |T'_{\lambda_i}| \ge (1 - \varepsilon) f(A \cup T_{\lambda_{i-1}}) / k then B[\lambda_i] \leftarrow true
13:
                    \lambda^* \leftarrow \max\{\lambda_i \in \Lambda : B[\lambda_i] = false and ((\lambda_i \leq k \text{ and } B[1] \text{ to } B[\lambda_{i-1}] \text{ are all true}) \text{ or }
14:
      (\lambda_i > k \text{ and } \exists m \geq 1 \text{ s.t. } |\bigcup_{u=m}^{i-1} T'_{\lambda_u}| \geq k \text{ and } B[\lambda_m] \text{ to } B[\lambda_{i-1}] \text{ are all true})\}
                    A \leftarrow A \cup T_{\lambda^*}
15:
             if |V| > 0 then return failure
16:
             return A' \leftarrow last k elements added to A
17:
```

 split V into blocks to reduce the query calls

- $\frac{1}{4}$ ratio, O(n) query and $O(\log n)$ adaptive complexity

Algorithm 1 The algorithm that obtains ratio $(4 + O(\varepsilon))^{-1}$ in $O(\log(n)/\varepsilon^3)$ adaptive rounds and expected $O(n/\varepsilon^3)$ queries.

```
1: procedure LINEARSEQ(f, \mathcal{N}, k, \varepsilon)
              Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, error \varepsilon
  3:
              a = \arg\max_{u \in \mathcal{N}} f(\{u\})
             Initialize A \leftarrow \{a\}, V \leftarrow \mathcal{N}, \ell = \lceil 4(1+1/(\beta\varepsilon))\log(n) \rceil, \beta = \varepsilon/(16\log(8/(1-e^{-\varepsilon/2})))
  4:
  5:
             for j \leftarrow 1 to \ell do
  6:
                    Update V \leftarrow \{x \in V : \Delta(x \mid A) \ge f(A)/k\} and filter out the rest
                    if |V| = 0 then break
  7:
                    V = \{v_1, v_2, \dots, v_{|V|}\} \leftarrow \mathbf{random\text{-}permutation}(V)
                    \Lambda \leftarrow \{ |(1+\varepsilon)^u| : 1 \le |(1+\varepsilon)^u| \le k, u \in \mathbb{N} \}
  9:
                                 \bigcup\{|k+u\varepsilon k|:|k+u\varepsilon k|\leq |V|,u\in\mathbb{N}\}\cup\{|V|\}
10:
                    B[\lambda_i] = false, for \lambda_i \in \Lambda
                   for \lambda_i \in \Lambda in parallel do
11:
                          T_{\lambda_{i-1}} \leftarrow \{v_1, v_2, \dots, v_{\lambda_{i-1}}\}; T_{\lambda_i} \leftarrow \{v_1, v_2, \dots, v_{\lambda_i}\}; T'_{\lambda_i} \leftarrow T_{\lambda_i} \setminus T_{\lambda_{i-1}}
12:
                          if \Delta \left(T'_{\lambda_i} \mid A \cup T_{\lambda_{i-1}}\right) / |T'_{\lambda_i}| \geq (1-\varepsilon) f(A \cup T_{\lambda_{i-1}}) / k then B[\lambda_i] \leftarrow true
13:
                    \lambda^* \leftarrow \max\{\lambda_i \in \Lambda : B|\lambda_i| = false and ((\lambda_i \le k \text{ and } B|1| \text{ to } B|\lambda_{i-1}| \text{ are all true}) \text{ or }
14:
       (\lambda_i > k \text{ and } \exists m \geq 1 \text{ s.t. } |\bigcup_{n=m}^{i-1} T'_{\lambda_n}| \geq k \text{ and } B[\lambda_m] \text{ to } B[\lambda_{i-1}] \text{ are all } \mathbf{true}))\}
                    A \leftarrow A \cup T_{\lambda^*}
15:
             if |V| > 0 then return failure
16:
              return A' \leftarrow \text{last } k \text{ elements added to } A
17:
```

 check the marginal gain of each block in parallel

- $\frac{1}{4}$ ratio, O(n) query and $O(\log n)$ adaptive complexity

Algorithm 1 The algorithm that obtains ratio $(4 + O(\varepsilon))^{-1}$ in $O(\log(n)/\varepsilon^3)$ adaptive rounds and expected $O(n/\varepsilon^3)$ queries.

```
1: procedure LINEARSEQ(f, \mathcal{N}, k, \varepsilon)
             Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, error \varepsilon
  3:
             a = \arg\max_{u \in \mathcal{N}} f(\{u\})
             Initialize A \leftarrow \{a\}, V \leftarrow \mathcal{N}, \ell = \lceil 4(1+1/(\beta\varepsilon))\log(n) \rceil, \beta = \varepsilon/(16\log(8/(1-e^{-\varepsilon/2})))
  4:
  5:
             for j \leftarrow 1 to \ell do
  6:
                    Update V \leftarrow \{x \in V : \Delta(x \mid A) \ge f(A)/k\} and filter out the rest
                    if |V| = 0 then break
  7:
                    V = \{v_1, v_2, \dots, v_{|V|}\} \leftarrow \mathbf{random\text{-permutation}}(V)
                    \Lambda \leftarrow \{ |(1+\varepsilon)^u| : 1 \le |(1+\varepsilon)^u| \le k, u \in \mathbb{N} \}
  9:
                                 \bigcup\{|k+u\varepsilon k|: |k+u\varepsilon k| \le |V|, u \in \mathbb{N}\} \cup \{|V|\}
10:
                    B[\lambda_i] = false, for \lambda_i \in \Lambda
                    for \lambda_i \in \Lambda in parallel do
11:
                           T_{\lambda_{i-1}} \leftarrow \{v_1, v_2, \dots, v_{\lambda_{i-1}}\}; T_{\lambda_i} \leftarrow \{v_1, v_2, \dots, v_{\lambda_i}\}; T'_{\lambda_i} \leftarrow T_{\lambda_i} \setminus T_{\lambda_{i-1}}
12:
                           if \Delta \left( T'_{\lambda_i} \mid A \cup T_{\lambda_{i-1}} \right) / |T'_{\lambda_i}| \ge (1 - \varepsilon) f(A \cup T_{\lambda_{i-1}}) / k then B[\lambda_i] \leftarrow true
13:
                    \lambda^* \leftarrow \max\{\lambda_i \in \Lambda : B[\lambda_i] = false and ((\lambda_i \leq k \text{ and } B[1] \text{ to } B[\lambda_{i-1}] \text{ are all true}) \text{ or }
14:
      \{\lambda_i > k \text{ and } \exists m \geq 1 \text{ s.t. } |\bigcup_{u=m}^{i-1} T'_{\lambda_u}| \geq k \text{ and } B[\lambda_m] \text{ to } B[\lambda_{i-1}] \text{ are all } true)\}
                    A \leftarrow A \cup T_{\lambda^*}
15:
             if |V| > 0 then return failure
16:
              return A' \leftarrow \text{last } k \text{ elements added to } A
17:
```

- prefix selection
 - ensure that the selected subset obtains large marginal gain
 - ensure that an ε/2-fraction of V can be filtered out at next iteration with high probability

ThresholdSeq

- O(n) query and O(log n) adaptive complexity

```
Algorithm 3 A Parallelizable Greedy Algorithm for Fixed Threshold \tau
  1: procedure THRESHOLDSEQ(f, \mathcal{N}, k, \delta, \varepsilon, \tau)
            Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, revision \delta, error \varepsilon, threshold \tau
            Initialize A \leftarrow \emptyset, V \leftarrow \mathcal{N}, \ell = \lceil 4(1+2/\varepsilon) \log(n/\delta) \rceil
            for i \leftarrow 1 to \ell do
                  Update V \leftarrow \{x \in V : \Delta(x \mid A) \ge \tau\} and filter out the rest
                  if |V|=0 then
  6:
                        return A
                  V \leftarrow \mathbf{random\text{-}permutation}(V).
                  s \leftarrow \min\{k - |A|, |V|\}
                  \Lambda \leftarrow \{ |(1+\varepsilon)^u| : 1 \le |(1+\varepsilon)^u| \le s, u \in \mathbb{N} \} \cup \{s\}
10:
11:
                  B \leftarrow \emptyset
12:
                  for \lambda_i \in \Lambda in parallel do
                        T_{\lambda_i} \leftarrow \{v_1, v_2, \dots, v_{\lambda_i}\}
13:
                        if \Delta (T_{\lambda_i} \mid A) / |T_{\lambda_i}| \ge (1 - \varepsilon)\tau then
14:
                              B \leftarrow B \cup \{\lambda_i\}
15:
                  \lambda^* \leftarrow \min\{\lambda_i \in \Lambda : \lambda_i > b, \forall b \in B\}
16:
                  A \leftarrow A \cup T_{\lambda^*}
17:
18:
                  if |A|=k then
                        return A
19:
20:
            return failure
```

- analogous to LinearSeg
- f(A)/|A| $\geq (1-\varepsilon)\tau/(1+\varepsilon)$
- constant threshold τ
- much simpler while only consider the first min{k-|A|,|V|}
 elements
- stop when |A|=k

LS+PGB

- 1-1/e ratio, O(n) query and $O(\log n)$ adaptive complexity

Algorithm 4 A Parallelizable Greedy Algorithm to Boost to the Optimal Ratio.

```
1: procedure PARALLELGREEDYBOOST(f, \mathcal{N}, k, \alpha, \Gamma, \varepsilon)
2: Input: evaluation oracle f: 2^{\mathcal{N}} \to \mathbb{R}^+, constraint k, constant \alpha, value \Gamma such that \Gamma \le f(O) \le \Gamma/\alpha, error \varepsilon
3: Initialize \tau \leftarrow \Gamma/(\alpha k), \delta \leftarrow 1/(\log_{1-\varepsilon}(\alpha/3)+1), A \leftarrow \emptyset
4: while \tau \ge \Gamma/(3k) do
5: \tau \leftarrow \tau(1-\varepsilon)
6: S \leftarrow \text{THRESHOLDSEQ}(f_A, \mathcal{N}, k-|A|, \delta, \varepsilon/3, \tau)
7: A \leftarrow A \cup S
8: if |A| = k then
9: return A
```

- Use LinearSeq as preprocessing algorithm to get an α -approximation solution Γ
- Γ and α are used to produce an initial threshold value τ
- The threshold value is iteratively decreased by the factor (1-ε)

Empirical Results - Environment Setup

- The experiments are conducted on a server running Ubuntu 20.04.2 with kernel 5.8.0
- The hardware of the system consists of **40 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz** cores with **75 threads** made available to the algorithms for the experiments.
- All algorithms were implemented using **Open-MPI** and **mpi4py** library
- The experiments were performed across six applications with groundset size ranging from
 1,885 100,000 and K values ranging from 0.1% 10% of groundset.
- For evaluation, the metrics of total time, total queries, adaptive rounds and objective value were used for comparison.
- Our algorithm (LS+PGB) is compared to the previous state-of-art algorithm FAST¹.

Empirical Results - Objective Value

The objective value is normalized by that of **Greedy**

Overall **LS+PGB** either maintains or outperforms the objective obtained by **FAST** across all applications

With the **TrafficMonitor** and **MaxCover (BA)** being the instances where it **exceeds the average objective value of FAST by 6% and 5% respectively**.

Empirical Results - Queries

Both **FAST** and **LS+PGB** exhibit a linear scaling behavior with the increasing k values

Overall on an average LS+PGB achieves the objective in less than half the total queries required by FAST for all of the applications but TrafficMonitor and InfluenceMax.

For TrafficMonitor & InfluenceMax, FAST requires 1.5 and 1.9 times the queries needed by LS+PGB

Empirical Results - Adaptive Rounds

LS+PGB exhibits a very good scaling behavior with the increasing k values with at most 5 fold increase in adaptive rounds with 100 fold increase in k value.

Overall on an average FAST requires more than 3.5 times the adaptive rounds needed by LS+PGB to achieve the objective.

For MaxCover, RevenueMax, TwitterSumm and ImageSumm FAST requires 3.5, 4.3, 4.8 and 7.2 times more adaptive rounds.

Empirical Results - Time Taken

Both algorithms exhibit linear scaling of runtime with k

On many instances, LS+PGB is faster by more than an order of magnitude

Overall on an average **FAST** requires almost **4.8 times** the **time needed by LS+PGB** to achieve the objective.

For TwitterSumm, MaxCover, RevenueMax and ImageSumm FAST is on average 4.6, 4.7, 6.8 and 19.2 times slower than LS+PGB.

Empirical Results - Overall Result

	Runtime (s)		Objective Value		Queries	
Application	FAST	LS+PGB	FAST	LS+PGB	FAST	LS+PGB
TrafficMonitor	3.7×10^{-1}	2.1×10^{-1}	4.7×10^{8}	5.0×10^8	3.5×10^3	2.4×10^3
InfluenceMax	4.4×10^{0}	2.3×10^{0}	1.1×10^3	$1.1 imes 10^3$	$7.7 imes 10^4$	4.0×10^4
TwitterSumm	1.6×10^{1}	$3.5 imes 10^{0}$	$3.8 imes 10^5$	$3.8 imes 10^5$	$1.5 imes 10^5$	6.2×10^4
RevenueMax	3.9×10^2	5.4×10^1	1.4×10^4	1.4×10^4	7.6×10^4	2.7×10^4
MaxCover (BA)	3.7×10^2	7.6×10^1	6.0×10^{4}	6.3×10^4	5.8×10^5	1.8×10^5
ImageSumm	1.6×10^{1}	$\textbf{8.1}\times\textbf{10}^{\textbf{-1}}$	9.1×10^3	9.1×10^3	1.3×10^5	$4.8 \times 10^{\circ}$

Conclusion

- In this paper, we made the following contributions:
 - Theoretical
 - **LinearSeq**: A constant-factor algorithm for SM with smaller adaptivity than any previous algorithm, especially for values of *k* that are large relative to *n*.
 - ThresholdSeq: An algorithm that adds elements that have a gain of a specified threshold with expected linear query complexity and logarithmic adaptive rounds.
 - **LS+PGB**: An parallelized greedy algorithm which is used in conjunction with LinearSeq and ThreshoulSeq. It obtains nearly the optimal result, in terms of ratio, adaptivity and query complexity.
 - Empirical
 - LS+PGB is faster than the state-of-art algorithm FAST in an extensive empirical evaluation.