
Best of Both Worlds: Practical and
Theoretically Optimal Submodular

Maximization in Parallel
Yixin Chen, Tonmoy Dey, Alan Kuhnle

Department of Computer Science
Florida State University

Submodularity
Can be defined as a property of a function where:

● Given an objective function

Submodularity
Can be defined as a property of a function where:

● Given an objective function

● The marginal gain of adding an element to a set diminishes with increase in size of the set

 :
● Asdasd

Monotonicity

Given a cardinality constraint k
Objective: Maximize the coverage function with no more than k elements:

 i.e Maximize f(S), subject to |S| ≤ k

Submodular Maximization - Cardinality Constraint

● Metrics
○ Approximation Ratio:

■ the minimal ratio of the solution to the optimal result

○ Query Complexity:
■ total number of query calls

○ Adaptivity:
■ Introduced by Balskanski and Singer¹ for submodular

optimization
■ Defined as the minimal number of sequential rounds

required to achieve a constant factor approximation
when polynomially-many queries can be executed in
parallel at each round.

■ It is the metric used to define how efficiently the
algorithm can parallelize each iteration

Submodular Maximization - Performance Metrics

[1] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In ACM SIGACT Symposium on
Theory of Computing (STOC), 2018.

Related Work

● Optimal ratio¹:
● Lower bound of query complexity²:
● Lower bound of adaptivity³:

[1] G L Nemhauser and L A Wolsey. Best Algorithms for Approximating the Maximum of a Submodular Set Function. Mathematics of
Operations Research, 3(3):177–188, 1978.
[2] Alan Kuhnle. Quick Streaming Algorithms for Maximization of Monotone Submodular Functions in Linear Time. In Artificial
Intelligence and Statistics (AISTATS), 2021.
[3] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In ACM SIGACT Symposium on
Theory of Computing (STOC), 2018.

Related Work

● Several previous works get nearly theoretically optimal result
● Impractical with large constant factors

† indicates the result holds with constant probability or in expectation;
‡ indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)

Related Work - FAST¹

● speed up the algorithms using the adaptive sequencing technique
● Sacrifice the theoretical guarantee
● Significantly, no ratio for k < 850

† indicates the result holds with constant probability or in expectation;
‡ indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)
[1] Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on
Machine Learning (ICML), 2019.

Our Main Algorithm - LS+PGB

● Provides theoretical guarantee for all k values
● Empirically outperforms, in terms of runtime, adaptivity, total

queries, and objective values, the previous state-of-the-art algorithm
FAST (Breuer et al.)

† indicates the result holds with constant probability or in expectation;
‡ indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)

Contributions

● LinearSeq: obtains a constant ratio in expected aaa
query complexity and adaptivity with probability aaa
○ Modified: achieves adaptivity with sacrificing the ratio to

be

Contributions

● LinearSeq: obtains a constant factor in expected aaa
query complexity and adaptivity with probability aaa
○ Modified: achieves adaptivity with sacrificing the ratio to

be
● ThresholdSeq: the average marginal gain is larger than a specified

threshold with probability in expected query complexity and
adaptive rounds

Contributions

● LinearSeq: obtains a constant factor in expected aaa
query complexity and adaptivity with probability aaa
○ Modified: achieves adaptivity with sacrificing the ratio to

be
● ThresholdSeq: the average marginal gain is larger than a specified

threshold with probability in expected query complexity and
adaptive rounds

● LS+PGB: uses LinearSeq as preprocessing algorithm and combines
ThresholdSeq with boost mechanism; obtains nearly the optimal result

● Use f(A)/k as threshold to ensure that:
○ The last k elements in A contain a constant fraction of the value f(A)
○ f(A) is within a constant fraction of OPT

● Totally 2n query calls and n adaptive rounds

Highly adaptive linear-time algorithm - ¼ ratio

Problem: How to parallelize this
algorithm to a lowly adaptive version
without loss much of approximation
ratio and query complexity

Highly adaptive linear-time algorithm - ¼ ratio

● Use f(A)/k as threshold to ensure that:
○ The last k elements in A contain a constant fraction of the value f(A)
○ f(A) is within a constant fraction of OPT

● Totally 2n query calls and n adaptive rounds

LinearSeq
- ¼ ratio, O(n) query and O(log n) adaptive complexity

● filter out the
elements with small
marginal gains

● get a randomly
selected sequence

LinearSeq
- ¼ ratio, O(n) query and O(log n) adaptive complexity

● split V into blocks to
reduce the query
calls

LinearSeq
- ¼ ratio, O(n) query and O(log n) adaptive complexity

● check the marginal
gain of each block in
parallel

LinearSeq
- ¼ ratio, O(n) query and O(log n) adaptive complexity

● prefix selection
○ ensure that the

selected subset
obtains large
marginal gain

○ ensure that an
ε/2-fraction of V can
be filtered out at next
iteration with high
probability

LinearSeq
- ¼ ratio, O(n) query and O(log n) adaptive complexity

● analogous to
LinearSeq

●

● constant threshold 𝜏
● much simpler while

only consider the first
min{k-|A|,|V|}
elements

● stop when |A|=k

ThresholdSeq
- O(n) query and O(log n) adaptive complexity

● Use LinearSeq as
preprocessing algorithm to
get an 𝛼-approximation
solution 𝜞

● 𝜞 and 𝛼 are used to
produce an initial threshold
value 𝜏

● The threshold value is
iteratively decreased by
the factor (1-𝜀)

LS+PGB
- 1-1/e ratio, O(n) query and O(log n) adaptive complexity

Empirical Results - Environment Setup
● The experiments are conducted on a server running Ubuntu 20.04.2 with kernel 5.8.0

● The hardware of the system consists of 40 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz cores

with 75 threads made available to the algorithms for the experiments.

● All algorithms were implemented using Open-MPI and mpi4py library

● The experiments were performed across six applications with groundset size ranging from

1,885 - 100,000 and K values ranging from 0.1% - 10% of groundset.

● For evaluation, the metrics of total time, total queries, adaptive rounds and objective value

were used for comparison.

● Our algorithm (LS+PGB) is compared to the previous state-of-art algorithm FAST¹.

[1] Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on Machine
Learning (ICML), 2019.

Empirical Results - Objective Value

● The objective value is normalized by
that of Greedy

● Overall LS+PGB either maintains or
outperforms the objective obtained
by FAST across all applications

● With the TrafficMonitor and
MaxCover (BA) being the instances
where it exceeds the average
objective value of FAST by 6% and
5% respectively.

Empirical Results - Queries

● Both FAST and LS+PGB exhibit
a linear scaling behavior with the
increasing k values

● Overall on an average LS+PGB
achieves the objective in less
than half the total queries
required by FAST for all of the
applications but TrafficMonitor
and InfluenceMax.

● For TrafficMonitor &
InfluenceMax, FAST requires
1.5 and 1.9 times the queries
needed by LS+PGB

Empirical Results - Adaptive Rounds

● LS+PGB exhibits a very good
scaling behavior with the increasing
k values with at most 5 fold
increase in adaptive rounds with
100 fold increase in k value.

● Overall on an average FAST
requires more than 3.5 times the
adaptive rounds needed by
LS+PGB to achieve the objective.

● For MaxCover, RevenueMax,
TwitterSumm and ImageSumm
FAST requires 3.5, 4.3, 4.8 and 7.2
times more adaptive rounds.

Empirical Results - Time Taken

● Both algorithms exhibit linear
scaling of runtime with k

● On many instances, LS+PGB is
faster by more than an order of
magnitude

● Overall on an average FAST
requires almost 4.8 times the time
needed by LS+PGB to achieve the
objective.

● For TwitterSumm, MaxCover,
RevenueMax and ImageSumm
FAST is on average 4.6, 4.7, 6.8
and 19.2 times slower than
LS+PGB.

Empirical Results - Overall Result

Conclusion

● In this paper, we made the following contributions:
○ Theoretical

■ LinearSeq: A constant-factor algorithm for SM with smaller adaptivity than any previous
algorithm, especially for values of k that are large relative to n.

■ ThresholdSeq: An algorithm that adds elements that have a gain of a specified threshold
with expected linear query complexity and logarithmic adaptive rounds.

■ LS+PGB: An parallelized greedy algorithm which is used in conjunction with LinearSeq and
ThreshoulSeq. It obtains nearly the optimal result, in terms of ratio, adaptivity and query
complexity.

○ Empirical
■ LS+PGB is faster than the state-of-art algorithm FAST in an extensive empirical evaluation.

