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Submodularity
Can be defined as a property of a function where: 

● Given an objective function

● The marginal gain of adding an element to a set diminishes with increase in size of the set



                                                    :
● Asdasd

Monotonicity



Given a cardinality constraint k 
Objective: Maximize the coverage function with no more than k elements:

   i.e Maximize f(S), subject to |S| ≤ k

Submodular Maximization - Cardinality Constraint



● Metrics
○ Approximation Ratio:

■  the minimal ratio of the solution to the optimal result

○ Query Complexity: 
■ total number of query calls

○ Adaptivity: 
■ Introduced by Balskanski and Singer¹ for submodular 

optimization
■ Defined as the minimal number of sequential rounds 

required to achieve a constant factor approximation 
when polynomially-many queries can be executed in 
parallel at each round.

■ It is the metric used to define how efficiently the 
algorithm can parallelize each iteration

Submodular Maximization - Performance Metrics

[1] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In ACM SIGACT Symposium on 
Theory of Computing (STOC), 2018.



Related Work

● Optimal ratio¹:          
● Lower bound of query complexity²: 
● Lower bound of adaptivity³: 

[1] G L Nemhauser and L A Wolsey. Best Algorithms for Approximating the Maximum of a Submodular Set Function. Mathematics of 
Operations Research, 3(3):177–188, 1978.
[2] Alan Kuhnle. Quick Streaming Algorithms for Maximization of Monotone Submodular Functions in Linear Time. In Artificial 
Intelligence and Statistics (AISTATS), 2021.
[3] Eric Balkanski and Yaron Singer. The adaptive complexity of maximizing a submodular function. In ACM SIGACT Symposium on 
Theory of Computing (STOC), 2018.



Related Work

● Several previous works get nearly theoretically optimal result
● Impractical with large constant factors

† indicates the result holds with constant probability or in expectation;
‡ indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)



Related Work - FAST¹

● speed up the algorithms using the adaptive sequencing technique
● Sacrifice the theoretical guarantee
● Significantly, no ratio for k < 850

† indicates the result holds with constant probability or in expectation;
‡ indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)
[1] Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on 
Machine Learning (ICML), 2019.



Our Main Algorithm - LS+PGB

● Provides theoretical guarantee for all k values
● Empirically outperforms, in terms of runtime, adaptivity, total 

queries, and objective values, the previous state-of-the-art algorithm 
FAST (Breuer et al.)

† indicates the result holds with constant probability or in expectation;
‡ indicates the result does not hold on all instances of SM;
while no symbol indicates the result holds with probability greater than 1-O(1/n)
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Contributions

● LinearSeq: obtains a constant factor                in expected           aaa 
query complexity and              adaptivity with probability aaa
○ Modified: achieves                 adaptivity with sacrificing the ratio to 

be 
● ThresholdSeq: the average marginal gain is larger than a specified 

threshold with probability             in expected         query complexity and               
adaptive rounds

● LS+PGB: uses LinearSeq as preprocessing algorithm and combines 
ThresholdSeq with boost mechanism; obtains nearly the optimal result



● Use f(A)/k as threshold to ensure that:
○ The last k elements in A contain a constant fraction of the value f(A)
○ f(A) is within a constant fraction of OPT

● Totally 2n query calls and n adaptive rounds

Highly adaptive linear-time algorithm - ¼ ratio



Problem: How to parallelize this 
algorithm to a lowly adaptive version 
without loss much of approximation 
ratio and query complexity

Highly adaptive linear-time algorithm - ¼ ratio

● Use f(A)/k as threshold to ensure that:
○ The last k elements in A contain a constant fraction of the value f(A)
○ f(A) is within a constant fraction of OPT

● Totally 2n query calls and n adaptive rounds



LinearSeq 
- ¼ ratio, O(n) query and O(log n) adaptive complexity

● filter out the 
elements with small 
marginal gains



● get a randomly 
selected sequence 

LinearSeq 
- ¼ ratio, O(n) query and O(log n) adaptive complexity



● split V into blocks to 
reduce the query 
calls

LinearSeq 
- ¼ ratio, O(n) query and O(log n) adaptive complexity



● check the marginal 
gain of each block in 
parallel

LinearSeq 
- ¼ ratio, O(n) query and O(log n) adaptive complexity



● prefix selection
○ ensure that the 

selected subset 
obtains large 
marginal gain

○ ensure that an 
ε/2-fraction of V can 
be filtered out at next 
iteration with high 
probability

LinearSeq 
- ¼ ratio, O(n) query and O(log n) adaptive complexity



● analogous to 
LinearSeq

●

● constant threshold 𝜏
● much simpler while 

only consider the first 
min{k-|A|,|V|} 
elements

● stop when |A|=k

ThresholdSeq 
- O(n) query and O(log n) adaptive complexity



● Use LinearSeq as 
preprocessing algorithm to 
get an 𝛼-approximation 
solution 𝜞

● 𝜞 and 𝛼 are used to 
produce an initial threshold 
value 𝜏

● The threshold value is 
iteratively decreased by 
the factor (1-𝜀)

LS+PGB 
- 1-1/e ratio, O(n) query and O(log n) adaptive complexity



Empirical Results - Environment Setup
● The experiments are conducted on a server running Ubuntu 20.04.2 with kernel 5.8.0

● The hardware of the system consists of 40 Intel(R) Xeon(R) Gold 5218R CPU @ 2.10GHz cores 

with 75 threads made available to the algorithms for the experiments.

● All algorithms were implemented using Open-MPI and mpi4py library

● The experiments were performed across six applications with groundset size ranging from 

1,885 - 100,000 and K values ranging from 0.1% - 10% of groundset.

● For evaluation, the metrics of total time, total queries, adaptive rounds and objective value 

were used for comparison.

● Our algorithm (LS+PGB) is compared to the previous state-of-art algorithm FAST¹.

[1] Adam Breuer, Eric Balkanski, and Yaron Singer. The FAST Algorithm for Submodular Maximization. In International Conference on Machine 
Learning (ICML), 2019.



Empirical Results - Objective Value

● The objective value is normalized by 
that of Greedy

● Overall LS+PGB either maintains or 
outperforms the objective obtained 
by FAST across all applications 

● With the TrafficMonitor and 
MaxCover (BA) being the instances 
where it exceeds the average 
objective value of FAST by 6% and 
5% respectively. 



Empirical Results - Queries

● Both FAST and LS+PGB exhibit 
a linear scaling behavior with the 
increasing k values

● Overall on an average LS+PGB 
achieves the objective in less 
than half the total queries 
required by FAST for all of the 
applications but TrafficMonitor 
and InfluenceMax.  

● For TrafficMonitor & 
InfluenceMax, FAST requires 
1.5 and 1.9 times the queries 
needed by LS+PGB



Empirical Results - Adaptive Rounds

● LS+PGB exhibits a very good 
scaling behavior with the increasing 
k values with at most 5 fold 
increase in adaptive rounds with 
100 fold increase in k value.

● Overall on an average FAST 
requires more than 3.5 times the 
adaptive rounds needed by 
LS+PGB to achieve the objective.

● For MaxCover, RevenueMax, 
TwitterSumm and ImageSumm 
FAST requires 3.5, 4.3, 4.8 and 7.2 
times more adaptive rounds.



Empirical Results - Time Taken

● Both algorithms exhibit linear 
scaling of runtime with k

● On many instances, LS+PGB is 
faster by more than an order of 
magnitude

● Overall on an average FAST 
requires almost 4.8 times the time 
needed by LS+PGB to achieve the 
objective.

● For TwitterSumm, MaxCover, 
RevenueMax and ImageSumm 
FAST is on average 4.6, 4.7, 6.8 
and 19.2 times slower than 
LS+PGB.



Empirical Results - Overall Result



Conclusion

● In this paper, we made the following contributions:
○ Theoretical

■ LinearSeq: A constant-factor algorithm for SM with smaller adaptivity than any previous 
algorithm, especially for values of k that are large relative to n.

■ ThresholdSeq: An algorithm that adds elements that have a gain of a specified threshold 
with expected linear query complexity and logarithmic adaptive rounds.

■ LS+PGB: An parallelized greedy algorithm which is used in conjunction with LinearSeq and 
ThreshoulSeq. It obtains nearly the optimal result, in terms of ratio, adaptivity and query 
complexity.

○ Empirical
■  LS+PGB is faster than the state-of-art algorithm FAST in an extensive empirical evaluation.


