

Policy Learning Using Weak Supervision

Jingkang Wang*^{1,2}, Hongyi Guo*³, Zhaowei Zhu*⁴, Yang Liu⁴

Deep Learning in Sequential Decision Making

Atari2600 Games [Mnih et al., 2015]

Self-Driving [Amini et al., 2020]

AlphaGo [Silver et al., 2017]

Self-Driving [OpenAI, 2019]

Markov Decision Process (MDP)

[Mnih et al., 2013]

[Schulman et al., 2015]

[AlphaGo versus Lee Sedol]

Markov Decision Process (MDP)

[Mnih et al., 2013]

[Schulman et al., 2015]

[AlphaGo versus Lee Sedol]

Markov Decision Process (MDP)

[Mnih et al., 2013]

[Schulman et al., 2015]

[AlphaGo versus Lee Sedol]

Reinforcement Learning

Generated trajectory:

$$\tau = \{(s_t, a_t, r_t)\}_{t=0}^T$$

Objective: maximize the expected reward

$$J(\pi) = \mathbb{E}_{(s_t, a_t, r_t) \sim \tau} \left[\sum_{t=0}^{T} \gamma^t r_t \right]$$

Supervision signal: reward

Imitation Learning

Expert demonstrations

$$D_E = \{(s_i, a_i)\}_{i=1}^N$$

Behavioral Cloning Objective:

maximize the log-likelihood

$$J(\pi) = \mathbb{E}_{(s,a) \sim \mathcal{D}_E} \left[\log \pi(a|s) \right]$$

Supervision signal: expert action

Hybrid Learning (RL + IL)

Supervision signal: reward + expert action

$$\textbf{Hybrid objective: } J(\pi) = \lambda_1 \mathbb{E}_{(s_t, a_t, r_t) \sim \tau} \left[\sum\nolimits_{t=0}^T \gamma^t r_t \right] + \lambda_2 \mathbb{E}_{(s, a) \sim \mathcal{D}_E} \left[\log \pi(a|s) \right]$$

Policy Learning

Summary:

Weak supervision signals are everywhere!

Weak Supervision:

- RL: The reward may be collected through sensors thus noisy
- IL: The demonstrations by an expert are often imperfect due to limited resources

Weakly Supervised Policy Learning

Problem: Supervision signals \tilde{Y} (either reward or expert's demonstrations) are *not credible!*

Weak Supervision:

- RL: The reward may be collected through sensors thus noisy
- IL: The demonstrations by an expert are often imperfect due to limited resources

Weakly Supervised Policy Learning

Weakly Supervised Policy Learning $\{(s_i, a_i), \widetilde{Y}_i\}_{i=1}^N$

Hybrid-Learning

• Objective:
$$J(\pi) = \mathbb{E}_{(s,a) \sim au} \left[\operatorname{Eva}_{\pi} \left((s,a), \tilde{Y} \right) \right]$$

Correlated Agreement (CA)

Solution - CA with weak supervision: $\operatorname{Eva}_{\pi}((s_i,a_i),\widetilde{Y}_i) - \operatorname{Eva}_{\pi}((s_j,a_j),\widetilde{Y}_k)$

Correlated Agreement (CA)

Solution - CA with weak supervision: $\operatorname{Eva}_{\pi}((s_i,a_i),\widetilde{Y}_i) - \operatorname{Eva}_{\pi}((s_j,a_j),\widetilde{Y}_k)$

PeerPL: A Unified Framework for Weakly Supervised PL

Solution - CA with weak supervision: $\operatorname{Eva}_{\pi}((s_i,a_i),\widetilde{Y}_i) - \operatorname{Eva}_{\pi}((s_j,a_j),\widetilde{Y}_k)$

PeerRL

PeerRL

We assume the noisy reward \tilde{r} is generated following a certain function $F: \mathcal{R} \to \widetilde{\mathcal{R}}$.

- Discrete with $|\mathcal{R}|$ levels.
- \bullet Characterized via an unknown matrix $\mathbf{C}^{\mathrm{RL}}_{|\mathcal{R}|\times|\mathcal{R}|}$

PeerRL handles the noisy reward by defining the peer RL reward:

$$\tilde{r}_{\mathrm{peer}}(s, a) = \tilde{r}(s, a) - \xi \cdot \tilde{r}'$$

where $\tilde{r}' \overset{\pi_{\text{sample}}}{\sim} \{ \tilde{r}(s,a) | s \in \mathcal{S}, a \in \mathcal{A} \}$ is a reward sampled over all state-action pairs according to a fixed policy π_{sample} .

Our theory shows that peer RL rewards are robust to noisy rewards (see Lemma 1 and Theorem 1).

$$r(s,a) \ \stackrel{\mathrm{C}^{\mathrm{RL}}_{|\mathcal{R}| imes|\mathcal{R}|}}{ op} \ ilde{r}(s,a)$$

$$\tilde{r}(s,a) \xrightarrow{\operatorname{CA}} \tilde{r}_{\operatorname{peer}}(s,a)$$

Why Peer Reward Works?

Hypothesis 1: PeerRL reduces the bias (while with larger variance like Wang et al., 2020)

$$\text{noisy reward:}\quad \mathbb{E}[\tilde{r}] = \eta \cdot \left(\mathbb{E}[r] + \frac{e_+}{1-e_--e_+}r_- + \frac{e_-}{1-e_--e_+}r_+\right)$$

$$\text{peer reward:} \quad \mathbb{E}[\tilde{r}_{\text{peer}}] = \eta \cdot (\mathbb{E}[r] - (1 - p_{\text{peer}})r_{-} - p_{\text{peer}}r_{+})$$

potentially much larger than $(1 - p_{peer})$ and p_{peer} in high noise regime!

- **Hypothesis 2:** PeerRL helps break ties
 - "tie" states indicate that the rewards for different states are the same unstable and uncertain
 - o randomness in discretization model thus breaking ties more informative for optimization

2-state Markov process (no actions)

$$s_1$$
 s_2

$$r_1 \sim \mathsf{clamp}[\mathcal{N}(0.6, 1), \min = 0, \max = 1]$$

$$r_2 \sim \mathsf{clamp}[\mathcal{N}(0.4, 1), \min = 0, \max = 1]$$

	Correct	Tie	Incorrect
Baseline	54.6%	5.6%	39.8%
PeerRL	58.0%	0.3%	41.7%
		Ti	e breaking!

PeerPL: A Unified Framework for Weakly Supervised PL

Solution - CA with weak supervision: $\operatorname{Eva}_{\pi}((s_i,a_i),\widetilde{Y}_i) - \operatorname{Eva}_{\pi}((s_j,a_j),\widetilde{Y}_k)$

PeerBC

PeerBC

Available weak demonstrations $\{(s_i, \tilde{a}_i)\}_{i=1}^N$ where $\tilde{a}_i \sim \tilde{\pi}_E(\cdot|s_i)$

- The noisy action \tilde{a}_i is independent of the state given the deterministic expert action $\pi_E(s)$
- The noise is characterized by an unknown confusion matrix $\mathbf{C}^{\mathrm{BC}}_{|\mathcal{A}| \times |\mathcal{A}|}$

$$a_i \stackrel{\mathrm{C}^{\mathrm{BC}}_{|\mathcal{A}| imes |\mathcal{A}|}}{\longrightarrow} \tilde{a}_i$$

Again, we use CA with weak supervision to handle the noise

Taking cross-entropy loss for example

•

$$J^{ ext{BC}}(\pi_{ heta}) = \mathbb{E}\Big[\mathsf{Eva}^{ ext{BC}}_{\pi}ig((s_i,a_i), ilde{a}_iig)\Big] - \xi\cdot \mathbb{E}\Big[\mathsf{Eva}^{ ext{BC}}_{\pi}ig((s_j,a_j), ilde{a}_kig)\Big]$$

where $\operatorname{\mathsf{Eva}}^{\operatorname{BC}}_{\pi}(s,a), \tilde{a}) = -\ell(\pi_{\theta},(s,\tilde{a})) = \log \pi_{\theta}(\tilde{a}|s).$ sufficient amount of weak demonstrations

(see Theorem 2)

$$\mathsf{Eva}^{\mathrm{BC}}_\piig((s_i,a_i), ilde{a}_iig) \stackrel{\operatorname{CA}}{\longrightarrow} J^{\mathrm{BC}}(\pi_ heta)$$

PeerPL: A Unified Framework for Weakly Supervised PL

Solution - CA with weak supervision: $\operatorname{Eva}_{\pi}((s_i,a_i),\widetilde{Y}_i) - \operatorname{Eva}_{\pi}((s_j,a_j),\widetilde{Y}_k)$

PeerCT

PeerCT

Policy Co-Training (Song et al., 2019) is an instance of hybrid policy learning

• Two agents A,B with policies π^A and π^B that receive partial observations

 Agents are trained jointly to learn with rewards and noisy demonstrations from each other.

- For instance, consider agent A
 - O Besides interacting with environment, A also receives $\{s_i,\pi_B(s_i)\}$ from agent B
 - We consider π^B as the noisy version of the optimal policy

Similar to the PeerBC setting, we use CA with weak supervision to handle the noise in imperfect demonstrations

$$J^{ ext{CT}}(\pi_{ heta}) = \mathbb{E}\Big[\mathsf{Eva}^{ ext{RL}}_{\pi}ig((s^A_i, a^A_i), r^A_iig) + \mathsf{Eva}^{ ext{BC}}_{\pi}ig((s^A_i, a^A_i), a'^B_iig)\Big] \ - \xi \cdot \mathbb{E}\Big[\mathsf{Eva}^{ ext{BC}}_{\pi}ig((s^A_j, a^A_j), a'^B_kig)\Big]$$

An example of PeerRL on CartPole

- RL with Noisy Rewards ($e_{-}=e_{+}=0.4$)
- training 10,000 frames using Dueling-DQN

noisy reward \tilde{r}

peer reward \tilde{r}_{peer}

PeerRL recovers true reward signals

- CartPole: training DDQN for 10,000 steps on, binary reward: $\{-1,1\}$
- symmetric noise: $e = e_{-} = e_{+}$

PeerBC recovers true expert signals

• CartPole-v1: train an imperfect RL model with PPO algorithm, unroll 16 episodes

PeerBC recovers true expert supervision signals

• CartPole-v1: train an imperfect RL model with PPO algorithm, unroll 16 episodes

PeerBC recovers true expert signals

- Atari games: train an imperfect RL model with PPO algorithm
- weak expert = 70%~90% as good as fully converged agent
- collect demonstrations using weak expert and generate 100 trajectories for each environment
- Note that no synthetic noise is added in the experiments

PeerCT recovers true reward signals

- Continuous Control/Atari: adopt the exact same setting as Song et al., 2019 without any synthetic noise included
- removes all even index coordinates in the state vector (view-A) or removing all odd index ones (view-B)
- implies the potential of our approach to deal with natural noise in real-world applications

Sensitivity of over-agreement penalty

Atari - Pong

Sensitivity of over-agreement penalty

Atari - Pong

Our method works robustly in a wide range of ξ !

Sensitivity of over-agreement penalty

Atari - Pong

Our method works robustly in a wide range of ξ !

Overly large penalty introduces too much noise

Conclusion

- We provided a unified formulation of the weakly supervised policy learning problems
- We proposed PeerPL, a weakly supervised policy learning framework to unify a series of RL/BC problems with low-quality supervision signals
 - RL with perturbed reward
 - o BC with imperfect demonstrations
 - Policy Co-Training (Hybrid RL + BC)
- Our method is theoretically guaranteed to recover the optimal policy with sufficient weak supervision signals.