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Neural networks are susceptible to adversarial attacks
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Adversarial training: worst-case training principle

e Adversarial training (Madry et al, 2018):

memp(G), where p(0) = E,,)p [r?easx L(6,x+4,y)

e Beyond adversarial training, can other types of min-max formulation and optimization techniques

advance the research in adversarial attack generation?



Min-Max Across Domains: Robust Optimization

e Robust optimization over K risk domains (optimize the worst-case performance):

minimize maximize Fj;(v)
vey 1€[K]

Qi Qian, Shenghuo Zhu, Jiasheng Tang, Rong Jin, Baigui Sun, Hao Li. Robust Optimization over Multiple Domains, 2019.
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Min-Max Across Domains: Robust Optimization

e Robust optimization over K risk domains (optimize the worst-case performance):

minimize maximize Fj;(v) )
vevy 1€[K]
Equivalent to reduces the generalizability to other
.. .. K domains and induces instability of
minimize maximize ) ., w;F;(v) the learni d
vey wEP i= e learning procedure
where P = {w|1Tw = 1,w; € [0,1],Vi} D

e Regularized Formulation (strike a balance between the average and the worst-case performance):

minimize maximize Zf{zl@ﬂ(v) — 1w —-1/K|3

vey weEeP

Domain weights strongly concave regularizer

Qi Qian, Shenghuo Zhu, Jiasheng Tang, Rong Jin, Baigui Sun, Hao Li. Robust Optimization over Multiple Domains, 2019.



Min-Max Power In Attack Design

e The unified min-max framework actually fits into various attack settings!

/— Attacking model ensembles
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Ensemble Attack over Multiple Models

e Consider K ML/DL models {M;}X ,, the goal is to find robust adversarial examples that can fool
all K models simultaneously

s & 5 o K
minimize maximize > e wif (8;%0, Y0, M;) — Z|lw — 1/K||3

e w encodes the difficulty level of attacking each model

> [ Model 1 }4> Dog X
o > { Model 2 }—> Gibbon X
° °
Image: panda  Robust Perturbation : :

—* [ Model K } — Cat X




Universal perturbation over multiple examples

e Consider K natural examples {(x;, ¥;)}X, and a single model M, the goal is to find the universal
perturbation ¢ so that all the corrupted K examples can fool M

% e .. i . K
minimize maximize Sy Wif (05 %4, y5, M) — 2||lw — 1/K]||3

e W encodes the difficulty level of attacking each image

Universal
Perturbation
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Robust attack over data transformations

e Consider K categories of data transformation {p;} e.g., rotation, lightening, and translation. The
goal to find the adversarial attack that is robust to data trans Mmations

minimize maximize 37,2, wiBi, [/ (£ (%0 + 8); 90, M)] — 3w — 1/K]3

e W encodes the difficulty level of attacking each type of transformed example

Augmented Images
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Min-Max Algorithm for Adversarial Attack Generation

(
% 0 i K
minimize maximize Z
vev weP !
o
gradient ascent for inner maximization
— APGDA

Input: given w(® and 8.

fort=1.,2.....T do
outer min.: fixing w = w(*=1_ update §(*) via
6 = projy, (6¢=Y —aVsF(6!~1))
inner maz.: fixing § = 6, update w*) via

w® = projp (WY + BV (wlt=1))
end for

Alternating projected gradient descent-ascent (APGDA) to solve

s wiFi(v) — 2w —1/K]|3

APGDA takes only one-step PGD for outer minimization and one-step projected

Theorem 1. Suppose that F;(8) has L-Lipschitz con-
tinuous gradients, and V is a convex compact set.

wen learnin tes o < + and =, then the
Given learning rates < }J nd g < }7, then the

sequence {8, w I generated by Algorithm 1 con-
verges to a first-order stationary point in rate O ().



Min-Max Algorithm for Adversarial Attack Generation

(
% 0 i K
minimize maximize Z
vev weP !
o
gradient ascent for inner maximization
— APGDA

Input: given w(® and 8.

fort=1.,2.....T do
outer min.: fixing w = w(*=1_ update §(*) via
6 = projy, (6¢=Y —aVsF(6!~1))
inner maz.: fixing § = 6, update w*) via

w® = projp (WY + BV (wlt=1))
end for

Alternating projected gradient descent-ascent (APGDA) to solve

s wiFi(v) — 2w —1/K]|3

APGDA takes only one-step PGD for outer minimization and one-step projected

Theorem 1. Suppose that F;(8) has L-Lipschitz con-
tinuous gradients, and V is a convex compact set.
Given learning rates o < % and [ < %, then the
sequence {8, w I generated by Algorithm 1 con-
verges to a first-order stationary point in rate O ().

APGDA is efficient!
(linear convergence rate)



AMGDA produces more robust adversarial attacks

e Significant improvements over average strategy on three robust adversarial attacks

~—— CIFAR-10 (L_inf Attack)

Model sets :
{MLP, VGG16, ResNet50, GooglLeNet}

B avg. ® min-max

5 random images in one group (K=5) 6 data transformations (K=6)
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Min-max outperforms heuristic strategies

e /., ensemble attack over four models: Model A (MLP), B (All-CNNs), C (LeNet), D (LeNet-Large)

100

80
B avg. (A+B+C+D)

60

Attack Success Rate (ASR, %)

MNIST CIFAR-10 15



Min-max outperforms heuristic strategies

e AMGDA outperforms the average PGD (Liu et al., 2018) by a large margin

100

80 +11%
B avg. (A+B+C+D)
60
. B min-max (APGDA)
40

MNIST CIFAR-10 16

Attack Success Rate (ASR, %)




Min-max outperforms heuristic strategies

e Robustness of four models (C > D > A > B) ¢« FGSM Attack Acco > Accp > Accyg > Accp

100 It is not necessary that all models are useful when producing
average ensemble attacks!
e
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Min-max outperforms heuristic strategies

e With the prior knowledge of robustness (C>D>A>B), we are able to design stronger heuristic strategies!

100 Learnable domain weights avoid supervised manual adjustment on
the heuristic weights or the choice of clipping threshold!
9
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Min-max outperforms heuristic strategies

e Adopting converged min-max weights statically leads to a huge performance drop

100 It is important to optimizes domain weights dynamically
during attack generation process!
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How does APGDA work?

e Robustness of four models (C > D >A > B)
e Model C and D are attacked insufficiently, leading to relatively

weak ensemble performance
e APGDA encodes the difficulty level to attack different models

based on the current attack loss

80
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How does APGDA work?

e APGDA dynamically adjusts the domain weights w;
e wp first raised to 0.45 then decreased to 0.3
e APGDA s efficient, w;converges after a small number of iterations
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How does APGDA work?

e APGDA dynamically adjusts the domain weights w;
e wp first raised to 0.45 then decreased to 0.3
e APGDA s efficient, w;converges after a small number of iterations
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Interpreting “image robustness” with domain weights

e Domain weight w for different images under ép norm (p=20,1,2,00)
e Associating domain weights with image visualization

Which images are more robust?

0[010[0/0]2]2(R2{%

Weight

dist.(C&W 45)

Metri
cHie €min (eoo)

23



Interpreting “image robustness” with domain weights

e Domain weight w for different images under ép norm (p=20,1,2,00)
e Associating domain weights with image visualization

Which images are more robust?

A 1.000 0.909 0.091
Weicht /1 O. 0. O. 0. 1.000 O O. 0.843 O. 0.157
g 4 0 0. 0 0 1.000 0 0. 0.788 0. 0.112
B 0 0. 0 0 1.000 0 0. 0.850 0. 0.150
Mettic dist.(C&W /)
Emin (Coo)
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Interpreting “image robustness” with domain weights

e Domain weight w for different images under ép norm (p=20,1,2,00)
e Associating domain weights with image visualization
e Letters with clear appearance (e.g., bold letter) < larger domain weights

Which images are more robust?

4y 0. 0. 0. 0. ]1.000} O. 0. 10909 0. ]0.091

Weioht 4y 0. 0. 0. 0. |1.000| O. 0. ]0.843] 0. |0.157
& 2 0. 0. 0. 0. |1.000| O. 0. ]0.788] 0. ]0.112

! 0. 0. 0. 0. ]1.000} O. 0. 10.850f 0. |0.150

Metric dist.(C&W 43)| 1.839 1.954 1.347 1.698 |3.041 | 1.928 1.439 |2.312| 1.521 |2.356
€min lso) | 0.113 0.167 0.073 0.121 10.199 | 0.082 0.106 |0.176| 0.072 }0.171

25



Min-Max Power in Attack Design, and more?

e The unified min-max framework also fits into defense!

/- Adversarial training under multiple perturbations \

£, ball £, ball + £oball £, ball + £oball + £ ball
\_ J 2




Understanding Defense over Multiple Perturbation Domains

: : .. £ ball + ¢5ball + ¢ ball
e Conventional adversarial training

miniamize Ex,y)eD n}l%)ﬁimize fer(0,6;%,y)
’ oo K€

o how to generalize under multiple gp-norm adversarial attacks?

[Maini et al., 2020]

27



Understanding Defense over Multiple Perturbation Domains

. ) . {ball + ¢oball + ¢;ball
e Conventional adversarial training

cp maximize f.(0,9;x,y)

minimize E .
0 16100 <€

)

o how to generalize under multiple gp-norm adversarial attacks?

e Treating “attack type” as “risk domain”
o Defending against the strongest adversarial attack across K
attack types in order to avoid blind attacking spots!

[Maini et al., 2020]

minimize [y ,)cp maximize F;(0)

06 1€[K]
2 K
nimize B . . AR
mmlemlze (x,y)ED wIél%?({lglel%(ei} ;wzftr( 053X, Y)
\ 4

mjniemize E(x,y)GD wlgg)f{lglé%g} ¢(0, w, {6z})

¢(9, W, {51}) = Zfil wiftl‘(ea 627 X, y) - %”W - l/K”% 28



Understanding Defense over Multiple Perturbation Domains

e Alternating multi-step projected gradient descent (AMPGD) to solve

miniemize IE(x,y)G'D wrg%),({lglé%(ez} ¢(9a W, {61})

V0, w,{8:}) == S0 w;fer(0,855%,y) — L|w — 1/K||3

e AMPGD performs SGD for outer minimization and multi-step PGD for inner
maximization (update perturbation and domain weights)

— AMPGD
Input: given 8%, w(©, §) and K > 0.
fort=1,2,....T do
given w(*=1) and 8~V perform SGD to
update 8%
given o), perform R-step PGD to update
w(® and §®

end for

29




AMPGD improves over previous baselines

e Results on MNIST (Following Maini et. al., 2020)

| 1
([ 1
[, |
. %0.6- |
1 £ I
B AVG B MAX © MSD B AMPGD 1 §°'5 :
80 | 5041 ,
12 ) --- MSD I
: g%/ —— awecp |
<
= r- / " (I) 1'0 |
—_ ; 1 1 Epoch 1
X - I .
> 60 \ i I
8 I
© | 2
: 1
Q | 1
Q
< 1
g :
3 40 | N |
[
3
< I I I
20 ‘ | L - I |
L_inf L_2 L_1 All Attacks  AA (All Attacks) 30



How does AMPGD work?

e Results on MNIST (Following Maini et. al., 2020)

: I
I _o0.38] 0.8 !
. /.,-f“"'"'- 807 !
7 = > 1
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+— _ +— _ 1
| 0 —— [1(e=10) 0 —— [1(e=10)
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r r 1 r x _ § |
I I I I 1 —— [.(€=0.3) 0.4 —o— [,(6=0.3) I
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— | | 1 I_Hll 300000 e e e e e e e e e e e e e == I
X 1 | 1
> 60 1 1 1
® 1 1 1
= 1 1 1
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o 1
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Conclusion

e We revisit the strength of min-max optimization in the context of adversarial attack

e Beyond adversarial training, we show that many attack generation or defense problems can
be re-formulated in our unified min-max framework

e Our approach results in superior performance as well as interpretability

e Our code is publicly available here: https://github.com/wangjksjtu/minmax-adv

Our method has been used in the following applications:
Adversarial T-shirt (Xu et al., 2020), black-box attack (Liu et al, 2020)! SCAN ME
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