

Adversarial Attack Generation Empowered by Min-Max Optimization

Jingkang Wang*^{1,2}, Tianyun Zhang*³, Sijia Liu^{4,5}, Pin-Yu Chen⁵, Jiacen Xu⁶, Makan Fardad⁷, Bo Li⁸

University of Toronto¹, Vector Institute², Cleveland State University³ Michigan State University⁴, MIT-IBM Watson AI Lab, IBM Research⁵ University of California, Irvine⁶, Syracuse University⁷ University of Illinois at Urbana-Champaign⁸

Neural networks are susceptible to adversarial attacks

Classified as Panda

Imperceptible Perturbation

Classified as Gibbon

Image: Goodfellow et al., Explaining and harnessing adversarial examples, ICLR 2015

Adversarial training: worst-case training principle

Adversarial training (Madry et al, 2018):

• Beyond adversarial training, can other types of **min-max** formulation and optimization techniques advance the research in adversarial attack generation?

Robust optimization over K risk domains (optimize the worst-case performance):

$$\underset{\mathbf{v} \in \mathcal{V}}{\text{minimize maximize}} \quad F_i(\mathbf{v})$$

Robust optimization over *K* risk domains (optimize the worst-case performance):

Equivalent to
$$\begin{array}{cccc} & \underset{\mathbf{v} \in \mathcal{V}}{\text{minimize maximize}} & F_i(\mathbf{v}) \\ & \underset{\mathbf{v} \in \mathcal{V}}{\text{minimize maximize}} & \sum_{i=1}^K w_i F_i(\mathbf{v}) \\ & \underset{\mathbf{v} \in \mathcal{V}}{\text{where}} & \mathcal{P} &= \{\mathbf{w} \,|\, \mathbf{1}^T \mathbf{w} \,=\, 1, w_i \,\in\, [0,1], \forall i\} \end{array}$$

Equivalent to

Robust optimization over K risk domains (optimize the worst-case performance):

Robust optimization over K risk domains (optimize the worst-case performance):

Regularized Formulation (strike a balance between the average and the worst-case performance):

7

Min-Max Power in Attack Design

The unified min-max framework actually fits into various attack settings!

Ensemble Attack over Multiple Models

• Consider K ML/DL models $\{\mathcal{M}_i\}_{i=1}^K$, the goal is to find robust adversarial examples that can fool all K models simultaneously

minimize maximize
$$\sum_{i=1}^{K} w_i f(\boldsymbol{\delta}; \mathbf{x}_0, y_0, \mathcal{M}_i) - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$$

• w encodes the difficulty level of attacking each model

Universal perturbation over multiple examples

• Consider K natural examples $\{(\mathbf{x}_i, y_i)\}_{i=1}^K$ and a single model \mathcal{M} , the goal is to find the universal perturbation δ so that all the corrupted K examples can fool \mathcal{M}

$$\underset{\boldsymbol{\delta} \in \mathcal{X}}{\text{minimize maximize}} \quad \sum_{i=1}^{K} w_i f(\boldsymbol{\delta}; \mathbf{x}_i, y_i, \mathcal{M}) - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$$

w encodes the difficulty level of attacking each image

Robust attack over data transformations

• Consider K categories of data transformation $\{p_i\}$ e.g., rotation, lightening, and translation. The goal to find the adversarial attack that is robust to data trans \mathcal{M} mations

$$\underset{\boldsymbol{\delta} \in \mathcal{X}}{\text{minimize maximize}} \quad \sum_{i=1}^{K} w_i \mathbb{E}_{t \sim p_i}[f(t(\mathbf{x}_0 + \boldsymbol{\delta}); y_0, \mathcal{M})] - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$$

• **W** encodes the difficulty level of attacking each type of transformed example

Min-Max Algorithm for Adversarial Attack Generation

Alternating projected gradient descent-ascent (APGDA) to solve

minimize maximize
$$\sum_{i=1}^{K} w_i F_i(\mathbf{v}) - \frac{\gamma}{2} ||\mathbf{w} - \mathbf{1}/K||_2^2$$

 APGDA takes only one-step PGD for outer minimization and one-step projected gradient ascent for inner maximization

APGDA

```
Input: given \mathbf{w}^{(0)} and \boldsymbol{\delta}^{(0)}.

for t=1,2,\ldots,T do

outer min.: fixing \mathbf{w}=\mathbf{w}^{(t-1)}, update \boldsymbol{\delta}^{(t)} via \boldsymbol{\delta}^{(t)}=\operatorname{proj}_{\mathcal{V}}\left(\boldsymbol{\delta}^{(t-1)}-\alpha\nabla_{\boldsymbol{\delta}}F(\boldsymbol{\delta}^{(t-1)})\right)

inner max.: fixing \boldsymbol{\delta}=\boldsymbol{\delta}^{(t)}, update \mathbf{w}^{(t)} via \mathbf{w}^{(t)}=\operatorname{proj}_{\mathcal{P}}\left(\mathbf{w}^{(t-1)}+\beta\nabla_{\mathbf{w}}\psi(\mathbf{w}^{(t-1)})\right)

end for
```

Theorem 1. Suppose that $F_i(\delta)$ has L-Lipschitz continuous gradients, and \mathcal{V} is a convex compact set. Given learning rates $\alpha \leq \frac{1}{L}$ and $\beta < \frac{1}{\gamma}$, then the sequence $\{\delta^{(t)}, \mathbf{w}^{(t)}\}_{t=1}^T$ generated by Algorithm 1 converges to a first-order stationary point in rate $\mathcal{O}(\frac{1}{T})$.

Min-Max Algorithm for Adversarial Attack Generation

Alternating projected gradient descent-ascent (APGDA) to solve

minimize maximize
$$\sum_{i=1}^{K} w_i F_i(\mathbf{v}) - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2$$

 APGDA takes only one-step PGD for outer minimization and one-step projected gradient ascent for inner maximization

APGDA

```
Input: given \mathbf{w}^{(0)} and \boldsymbol{\delta}^{(0)}.

for t = 1, 2, ..., T do

outer min.: fixing \mathbf{w} = \mathbf{w}^{(t-1)}, update \boldsymbol{\delta}^{(t)} via \boldsymbol{\delta}^{(t)} = \operatorname{proj}_{\mathcal{V}} \left( \boldsymbol{\delta}^{(t-1)} - \alpha \nabla_{\boldsymbol{\delta}} F(\boldsymbol{\delta}^{(t-1)}) \right)

inner max.: fixing \boldsymbol{\delta} = \boldsymbol{\delta}^{(t)}, update \mathbf{w}^{(t)} via \mathbf{w}^{(t)} = \operatorname{proj}_{\mathcal{P}} \left( \mathbf{w}^{(t-1)} + \beta \nabla_{\mathbf{w}} \psi(\mathbf{w}^{(t-1)}) \right)

end for
```


Theorem 1. Suppose that $F_i(\boldsymbol{\delta})$ has L-Lipschitz continuous gradients, and \mathcal{V} is a convex compact set. Given learning rates $\alpha \leq \frac{1}{L}$ and $\beta < \frac{1}{\gamma}$, then the sequence $\{\boldsymbol{\delta}^{(t)}, \mathbf{w}^{(t)}\}_{t=1}^T$ generated by Algorithm 1 converges to a first-order stationary point in rate $\mathcal{O}\left(\frac{1}{T}\right)$.

APGDA is efficient! (linear convergence rate)

AMGDA produces more robust adversarial attacks

Significant improvements over average strategy on three robust adversarial attacks

ullet ℓ_{∞} ensemble attack over four models: Model A (MLP), B (All-CNNs), C (LeNet), D (LeNet-Large)

AMGDA outperforms the average PGD (Liu et al., 2018) by a large margin

• Robustness of four models (C > D > A > B) \leftarrow FGSM Attack $|Acc_C > Acc_D > Acc_A > Acc_B|$

• With the prior knowledge of robustness (C>D>A>B), we are able to design stronger heuristic strategies!

Adopting converged min-max weights statically leads to a huge performance drop

How does APGDA work?

- Robustness of four models (C > D > A > B)
- Model C and D are attacked insufficiently, leading to relatively weak ensemble performance
- APGDA encodes the difficulty level to attack different models based on the current attack loss

How does APGDA work?

- ullet APGDA dynamically adjusts the domain weights w_i
- w_D first raised to 0.45 then decreased to 0.3
- ullet APGDA is efficient, w_i converges after a small number of iterations

How does APGDA work?

- ullet APGDA dynamically adjusts the domain weights w_i
- w_D first raised to 0.45 then decreased to 0.3
- ullet APGDA is efficient, w_i converges after a small number of iterations

A holistic tool to interpret the risk of different domain sources!

$$w_c > w_d > w_a > w_b$$

$$Acc_C > Acc_D > Acc_A > Acc_B$$

Interpreting "image robustness" with domain weights

- Domain weight w for different images under ℓ_p norm ($p=0,1,2,\infty$)
- Associating domain weights with image visualization

Which images are more robust?

	Image	0	0	0	0	0	2	2	2	2	2
Weight	ℓ_{∞}^2										
Metric	$\begin{vmatrix} \operatorname{dist.}(\operatorname{C\&W} \ell_2) \\ \epsilon_{\min} \left(\ell_{\infty}\right) \end{vmatrix}$										

Interpreting "image robustness" with domain weights

- Domain weight w for different images under ℓ_p norm ($p=0,1,2,\infty$)
- Associating domain weights with image visualization

Which images are more robust?

	Image	0	0	0	0	0	2	2	a	2	2
Weight	$egin{pmatrix} \ell_0 \ \ell_1 \ \ell_2 \ \ell_\infty \end{matrix}$	0. 0. 0. 0.	0. 0. 0.	0. 0. 0.	0. 0. 0.	1.000 1.000 1.000 1.000	0. 0. 0.	0. 0. 0.	0.909 0.843 0.788 0.850	0. 0. 0.	0.091 0.157 0.112 0.150
Metric	$\begin{vmatrix} \text{dist.}(\text{C\&W } \ell_2) \\ \epsilon_{\min} (\ell_{\infty}) \end{vmatrix}$										

Interpreting "image robustness" with domain weights

- Domain weight w for different images under ℓ_p norm ($p=0,1,2,\infty$)
- Associating domain weights with image visualization
- Letters with clear appearance (e.g., bold letter) ⇔ larger domain weights

Which images are more robust?

	Image	0	0	0	0	0	2	2	2	2	2
Weight	$egin{pmatrix} \ell_0 \ \ell_1 \ \ell_2 \ \ell_\infty \end{matrix}$	0. 0. 0.	0. 0. 0.	0. 0. 0.	0. 0. 0.	1.000 1.000 1.000 1.000	0. 0. 0.	0. 0. 0.	0.909 0.843 0.788 0.850	0. 0. 0.	0.091 0.157 0.112 0.150
Metric	$\left egin{array}{l} \operatorname{dist.}(\operatorname{C\&W} \ell_2) \ \epsilon_{\min} \left(\ell_{\infty} ight) \end{array} ight $	1.839 0.113	1.954 0.167	1.347 0.073	1.698 0.121	3.041 0.199	1.928 0.082	1.439 0.106	2.312 0.176	1.521 0.072	2.356 0.171

Min-Max Power in Attack Design, and more?

The unified min-max framework also fits into defense!

Understanding Defense over Multiple Perturbation Domains

Conventional adversarial training

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \ \mathbb{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \underset{\|\boldsymbol{\delta}\|_{\infty}\leq\epsilon}{\text{maximize}} \ f_{\text{tr}}(\boldsymbol{\theta},\boldsymbol{\delta};\mathbf{x},y)$$

 \circ $\;$ how to generalize under multiple $\ell_p\text{-norm}$ adversarial attacks?

Understanding Defense over Multiple Perturbation Domains

Conventional adversarial training

$$\underset{\boldsymbol{\theta}}{\text{minimize}} \ \mathbb{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \underset{\|\boldsymbol{\delta}\|_{\infty}\leq\epsilon}{\text{maximize}} \ f_{\text{tr}}(\boldsymbol{\theta},\boldsymbol{\delta};\mathbf{x},y)$$

- \circ $\;$ how to generalize under multiple $\ell_p\text{-norm}$ adversarial attacks?
- Treating "attack type" as "risk domain"
 - Defending against the strongest adversarial attack across K attack types in order to avoid blind attacking spots!

$$\begin{aligned} & \underset{\boldsymbol{\theta}}{\text{minimize}} \ \mathbb{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \ \underset{i\in[K]}{\text{maximize}} \ F_i(\boldsymbol{\theta}) \\ & \underset{\boldsymbol{\theta}}{\text{minimize}} \ \mathbb{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \ \underset{\mathbf{w}\in\mathcal{P},\{\boldsymbol{\delta}_i\in\mathcal{X}_i\}}{\text{maximize}} \ \sum_{i=1}^K w_i f_{\mathrm{tr}}(\boldsymbol{\theta},\boldsymbol{\delta}_i;\mathbf{x},y) \\ & \underset{\boldsymbol{\theta}}{\text{minimize}} \ \mathbb{E}_{(\mathbf{x},\mathbf{y})\in\mathcal{D}} \ \underset{\mathbf{w}\in\mathcal{P},\{\boldsymbol{\delta}_i\in\mathcal{X}_i\}}{\text{maximize}} \ \psi(\boldsymbol{\theta},\mathbf{w},\{\boldsymbol{\delta}_i\}) \\ & \psi(\boldsymbol{\theta},\mathbf{w},\{\boldsymbol{\delta}_i\}) := \sum_{i=1}^K w_i f_{\mathrm{tr}}(\boldsymbol{\theta},\boldsymbol{\delta}_i;\mathbf{x},y) - \frac{\gamma}{2} \|\mathbf{w} - \mathbf{1}/K\|_2^2 \end{aligned}$$

 ℓ_{∞} ball + ℓ_{2} ball + ℓ_{1} ball

[Maini et al., 2020]

Understanding Defense over Multiple Perturbation Domains

Alternating multi-step projected gradient descent (AMPGD) to solve

 AMPGD performs SGD for outer minimization and multi-step PGD for inner maximization (update perturbation and domain weights)

```
Input: given \boldsymbol{\theta}^{(0)}, \mathbf{w}^{(0)}, \boldsymbol{\delta}^{(0)} and K>0.

for t=1,2,\ldots,T do

given \mathbf{w}^{(t-1)} and \boldsymbol{\delta}^{(t-1)}, perform SGD to update \boldsymbol{\theta}^{(t)}

given \boldsymbol{\theta}^{(t)}, perform R-step PGD to update \mathbf{w}^{(t)} and \boldsymbol{\delta}^{(t)} end for
```

AMPGD improves over previous baselines

How does AMPGD work?

Conclusion

- We revisit the strength of **min-max optimization** in the context of **adversarial attack**
- Beyond adversarial training, we show that many attack generation or defense problems can be re-formulated in our unified min-max framework
- Our approach results in superior performance as well as interpretability
- Our code is publicly available here: https://github.com/wangiksjtu/minmax-adv

Our method has been used in the **following applications**:

Adversarial T-shirt (Xu et al., 2020), black-box attack (Liu et al, 2020)!

