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Motivation

How humans learn language?

- We learn the meaning of a word (e.g., 
banana) by associating it with the 
sensory features (e.g., shape, color, 
smell, taste etc.) of its referent (a real 
banana in the physical world).

- We learn concepts from real world 
experiences.
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Martin, A. (2016). GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain. Psychonomic 
bulletin & review, 23(4), 979-990.



Motivation
Predominant language learning models learn word representations only from 
textual context instead of multimodal context.
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Devlin et al. 2018 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding.
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Figures adapted from online resources.
Harnad, S. (1990). The symbol grounding problem. Physica D: Nonlinear Phenomena, 42(1-3), 335-346.

The machine is doing a task like deciphering an ancient language – since ‘word symbols’ in these 
language models are not grounded in real world experience.

‘ZEBRA’ = HORSE + STRIPES

= +



Background
Early works for grounding language in vision:

Bruni et al. 2014 Bordes and Zablocki et al. 2020

Kiros and Chan et al. 2018

Gupta et al. 2019

bag-of-visual-word

capturing word analogy

better word clusters

capturing word similarity



Background
Visual-language cross-modal learning with contrastive loss

CLIP: Radford and Kim et al. 2021 ALIGN: Jia et al. 2021
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Method
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Model Design
1. Unimodal Pretraining
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Model Design
1. Unimodal Pretraining

2. Visual Grounding of Natural Language

https://cocodataset.org/

https://cocodataset.org/


Model Design
1. Unimodal Pretraining

2. Visual Grounding of Natural Language

1. Harwath, D., Recasens, A., Surís, D., Chuang, 

G., Torralba, A., & Glass, J. (2018). Jointly 

discovering visual objects and spoken words 

from raw sensory input. In Proceedings of the 

European conference on computer vision 
(ECCV) (pp. 649-665).

1



Training
NT-Xent1 loss: Normalized Temperature-scaled Cross Entropy Loss

1. Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 
1597-1607). PMLR.
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language stream
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Model Design
1. Unimodal Pretraining

2. Visual Grounding of Natural Language

3. Visual Grounding of object relations

https://visualgenome.org/

https://visualgenome.org/


Model Design
1. Unimodal Pretraining

2. Visual Grounding of Natural Language

3. Visual Grounding of object relations



Interpreting the grounded semantic space

After visual grounding, we

- detach the language stream

- extract the grounded word embeddings

- apply intrinsic evaluations
- Principal Component Analysis

- Concreteness gradient

- Clustering of Word Categories

- Concept composition

- Cross-modal image search

- interpret the semantic space by human 
intuition and neurobiological knowledge

How does visual grounding reshape 
the semantic space in the language stream?



Results - PCA

Semcat dataset: Şenel, L. K., Utlu, I., Yücesoy, V., Koc, A., & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, 26(10), 1769-1779.

Human-rated Word Concreteness: 
Brysbaert, M., Warriner, A. B., & 
Kuperman, V. (2014). Concreteness ratings 
for 40 thousand generally known English 
word lemmas. Behavior research 
methods, 46(3), 904-911.



Results - PCA

Semcat dataset: Şenel, L. K., Utlu, I., Yücesoy, V., Koc, A., & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, 26(10), 1769-1779.



The 1st PC: abstract vs. concrete

The 2nd PC: human vs. non-human

The 3rd PC: object vs. scene
(animate vs. inanimate)

A 2D visualization 
of  the 2nd PC 
vs. the 3rd PC

21

natural scenes

human related 
scene

human related 
object

non-human 
object (animals)



Results – Semantic Norm Prediction

Wilcoxon Signed Rank Test
Significant level: 
n.s. not significant 
* p < 0:05
** p < 0:01
*** p < 0:001
**** p < 0:0001

CSLB: The Centre for Speech, Language and 
the Brain (CSLB) concept property norms.

e.g., has_wheels has_flavors does_cut is_dangerous is_clothing

CSLB dataset: Devereux, B. J., Tyler, L. K., Geertzen, J., & Randall, B. (2014). The Centre for Speech, Language and the Brain (CSLB) concept property norms. Behavior research methods, 46(4), 
1119-1127.



Results – word clustering

Semcat dataset: Şenel, L. K., Utlu, I., Yücesoy, V., Koc, A., & Cukur, T. (2018). Semantic structure and interpretability of word embeddings. IEEE/ACM Transactions on Audio, Speech, and Language 
Processing, 26(10), 1769-1779.



Results - Vision based compositional reasoning
Where is the phrase “striped horse” represented in the Semantic Space?

Is it a ZEBRA ?

=+ +
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Images for illustrative purpose only. Adapted from online resources.

What is a “Striped horse” in the grounded semantic space?
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Images for illustrative purpose only. Adapted from online resources.

What is a “Red Fruit” in the grounded semantic space?
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Results - Vision based compositional reasoning



Results - Continuous Image Search from Text & Image

The nonlinear 
transformation from the 
image / word space to 
the L2-normed 
multimodal 
representational space.

Search query:

Searching:



Results - Continuous Image Search from Text & Image

Image Pool: 41620 images from Open Images validation dataset

https://storage.googleapis.com/openimages/web/index.html
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Summary
We design a two-stream model for grounding language learning in vision:

- Progressive training

- cross-modal contrastive learning

After training, we analyze the language model as a stand-alone system. In this grounded word 
embedding space:

- The first principal axis = concrete vs. abstract gradient

- Principal axes are explainable by human intuition.

- Word representation captures human-defined semantic feature norms. 

- Concepts are better clustered.

Besides, “zebra = striped horse” in both word embedding space and joint representational space.



Thank you!
QUESTIONS & COMMENTS?
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