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What is Robustness?

e Adversarial Robustness
- Neural networks lack adversarial robustness, i.e., small perturbations to
inputs cause incorrect predictions.
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What is Robustness?

e Adversarial Robustness
- Neural networks lack adversarial robustness, i.e., small perturbations to
inputs cause incorrect predictions.

e Calibration
- Neural networks are often miscalibrated, i.e., the predicted probability is
not a good indicator of how much we should trust our model.

e Stability
- Neural networks give unstable predictions, i.e., the predicted probabilities
vary greatly over multiple independent runs.
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Any relationship between different “robustness”?

Adversarial
Robustness

Robustness
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Quantify robustness

e Adversarial Robustness

- Given an input x and a classifier f{-), we construct £- norm based CW
adversarial attack [1] that fix+0) # f(x).

Adversarial robustness = ||Adversarial perturbation 0 ||2

[1] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 20717 IEEE Symposium on Security and Privacy
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e Adversarial Robustness

- Given an input x and a classifier f{-), we construct £- norm based CW
adversarial attack [1] that fix+0) # f(x).

Adversarial robustness = ||Adversarial perturbation 0 ||2

Larger Adv. perturbation =—> More Adv. robust input x

[1] N. Carlini and D. Wagner. Towards evaluating the robustness of neural networks. In 20717 IEEE Symposium on Security and Privacy
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Quantify robustness

e Adversarial Robustness (Larger Adv. perturbation =) More Adv. robust input x)

e Calibration
- Expected calibration error (ECE) measures how well accuracy
and confidence of the predicted class are aligned [1].

Calibration Error = |Confidence - Accuracy|

predicted probability observed frequency
of correctness of correctness

[1] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. /ICML 2017.
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Quantify robustness

gl\ll I‘S I’Ial Robustness (Larger Adv. perturbation —> More Adv. robust input x)

- Expected calibration error (ECE) measures how well accuracy
and confidence of the predicted class are aligned [1].

Calibration Error = |Confidence - Accuracy|

predicted probability observed frequency
of correctness of correctness

Larger ECE ——> Worse calibrated prediction f{x)

[1] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On calibration of modern neural networks. /ICML 2017.



Google Research

Quantify robustness

e Adversarial Robustness (Larger Adv. perturbation —> More Adv. robust input x)
e Calibration (Larger ECE —> Worse calibrated prediction f(x))

e Stability
- Variance of the predicted probability of multiple independent runs
with random initialization [1].

Larger variance —) Less stable prediction f{x)

[1] T. Pearce, A. Brintrup, M. Zaki, and A. Neely. High-quality prediction intervals for deep learning: A distribution-free, ensembled approach. ICML 2018.
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Correlation

e Adversarial Robustness (Larger Adv. perturbation =) More Adv. robust input x)
e Calibration (Larger ECE —> Worse calibrated prediction f{x))
e Stability (Larger variance = Less stable prediction f{x))



Google Research

Correlation

e Adversarial Robustness (Larger Adv. perturbation =) More Adv. robust input x)
e Calibration (Larger ECE —> Worse calibrated prediction f{x))
e Stability (Larger variance = Less stable prediction f{x))
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e Adversarial Robustness (Larger Adv. perturbation =) More Adv. robust input x)

e Calibration
e Stability
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Correlation

e Adversarial Robustness (Larger Adv. perturbation =) More Adv. robust input x)
e Calibration (Larger ECE —> Worse calibrated prediction f{x))
e Stability (Larger variance = Less stable prediction f{x))
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Correlation: Adversarially unrobust input data are more likely to have
miscalibrated (higher ECE) and unstable (higher variance) predictions.
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Can we improve calibration and stability through the
relationship with adversarial robustness?

" To soften the labels of training data based on their
L adversarial robustness!

Identify Close to Reduce the Teach the model to
adversarially unrobust decision boundary confidence of be uncertain on
training input their labels Adv. unrobust input
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Algorithm
Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLsS)

- Step 1: Sort and divide the training data into R=70 small subsets with equal
size based on their adversarial robustness
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Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLsS)

Step 1: Sort and divide the training data into R=70 small subsets with equal
size based on their adversarial robustness

Step 2: Automatically learn the soft labels in each training subset based on
calibration performance on the corresponding validation subset.

Soft .Iab'els based on Callbratlo.n pgrformance
for training inputs on validation data
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Algorithm
Adversarial Robustness based Adaptive Label Smoothing (AR-AdaLsS)

- Step 1: Sort and divide the training data into R=70 small subsets with equal
size based on their adversarial robustness

- Step 2: Automatically learn the soft labels in each training subset based on
calibration performance on the corresponding validation subset.

Update p;.;" < p.;” — o - (conf(Sy); — acc(SP™)y)

Soft label for the correct class Confidence of the Accuracy in the
in the training subset predicted class in validation subset
validation subset
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e AR-AdalLS is especially better at improving calibration and stability in
adversarially unrobust regions, not just on average.
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Improvement over Label Smoothing (LS)

AR-AdaLsS is especially better at improving calibration and stability in
adversarially unrobust regions, not just on average.
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Compared to existing methods

e AR-AdalLS effectively improves calibration and is only rivaled by
domain-knowledge based data augmentation or ensemble models.

Method | CIFAR-10 CIFAR-100 | Method | CIFAR-10  CIFAR-100
Single-model based Data-augmentation based
Vanilla 20 6.1 mixup 0.8 1.8
Temperature Scaling 0.8 4.3 CCAT 2.4 4.2
Label Smoothing 1.1 2.8 Ensemble based
AdalS 1.3 2.9 Mix-n-Match 1.0 2.8
AR-AdalLS 0.6 2.3 Ensemble of Vanilla 0.9 2.2

Table 1: Expected calibration error (ECE) on CIFAR-10 and CIFAR-100. (Lower ECE is better.)
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Improve calibration on shifted dataset

® Corruptions: CIFAR-10-C and ImageNet-C include different types of corruptions,
e.g., noise, blur, weather and digital categories that frequently encountered in natural images.
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Improve calibration on shifted dataset

® Corruptions: CIFAR-10-C and ImageNet-C include different types of corruptions,
e.g., noise, blur, weather and digital categories that frequently encountered in natural images.

e Single & Ensemble:
- Single AR-AdaLS can effectively improve calibration on shifted data.

Single-model based | Ensemble-based
Methods | CIFAR-10-C  ImageNet-C || Methods | CIFAR-10-C  ImageNet-C
Vanilla 16.7 12.8 Ensemble of Vanilla 6.5 4.2
LS 10.1 8.2 Ensemble of LS 4.6 4.7
AdaL.S 9.6 8.0 Ensemble of AdalLS 5.2 4.8
AR-AdalLS 6.4 6.8 Ensemble of AR-AdaLS 5.5 5.1
AR-AdaLS of Ensemble 4.4 4.0

Table 1: Expected calibration error (ECE) on CIFAR-10-C and ImageNet-C. (Lower ECE is better.)
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Improve calibration on shifted dataset

® Corruptions: CIFAR-10-C and ImageNet-C include different types of corruptions,
e.g., noise, blur, weather and digital categories that frequently encountered in natural images.

e Single & Ensemble:
- Single AR-AdaLS can effectively improve calibration on shifted data.

- AR-AdaLS can be applied to ensemble models and further improve calibration.

Single-model based | Ensemble-based
Methods | CIFAR-10-C  ImageNet-C || Methods | CIFAR-10-C  ImageNet-C
Vanilla 16.7 12.8 Ensemble of Vanilla 6.5 4.2
LS 10.1 8.2 Ensemble of LS 4.6 4.7
AdaL.S 9.6 8.0 Ensemble of AdaLLS 5.2 4.8
AR-AdalS 6.4 6.8 Ensemble of AR-AdaLS 3.5 5.1
((AR=AdaLS of Ensemble 4.4 4.0 )

Table 1: Expected calibration error (ECE) on CIFAR-10-C and ImageNet-C. (Lower ECE is better.)
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Improve stability on shifted dataset

® Corruptions: CIFAR-10-C and ImageNet-C include different types of corruptions,
e.g., noise, blur, weather and digital categories that frequently encountered in natural images.

Dataset | CIFAR10-C | ImageNet-C
Shift Intensity | 1 2 3 4 5 | Mean || 1 2 3 4 5 | Mean
Vanilla 785 9.69 112 13.1 16.0 11.6 528 639 737 823 829 | 7.11
LS 554 695 811 965 11.8 | 841 486 584 678 755 741 | 649
AdaLS | 547 687 795 944 115 | 825 || 479 577 666 7.51 756 | 6.46
| AR-AdaLS 421 5.06 573 6.66 8.24 | 5.98 453 549 6.12 6.76 6.66 | 5.91)

Table 1: Variance on CIFAR-10-C and ImageNet-C. (Lower variance means more stable.)
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Conclusion

e Relationship among different aspects of robustness
- Inputs that are more vulnerable to adversarial attacks are more likely to
have poorly calibrated and unstable predictions.

e AR-AdalLS
- Automatically learn how much to soften the labels of training data based
on their adversarial robustness.

- AR-AdaLS can be applied to both single model and ensembles to improve
models’ calibration and stability.
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Thanks!



