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Challenges in RL
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Popov et al. 2017

Reward design must be consistent with counterfactual questions:
“What would an expert have done?”

Need to correctly balance interpretability and sparsity.



Imitation learning over reward engineering

Expert demonstrations Learner

‘Learning from demonstrations in the absence of reward feedback”
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Motivation

What are the theoretical limits of Imitation Learning (i) with
Interaction and (ii) in the presence of function approximation?

Notation:
\J(m): Expected total reward of policy 7 in an episode of length H.

ILearner 7 tries to minimize Suboptimality £ E [J(ﬂ*) — J(?r\)], 7* is expert’s policy
'® Difference in expected reward of the expert and the learner policy.



Theoretical understanding of IL: Prior work

No mteractlon Learner IS on/y ,orowo’eo’ a o’ataset of N ex,oert O’emonstrat/ons
‘ ~ Cannot interact with the MDP |

| Theorem [RYJR20] ,
' In the no-interaction and tabular setting, Behavior Cloning achieves, '

SH?log(N)

N
Best achievable (up to log-factors) by any algorithm. |

Suboptimality <



Going beyond the no-interaction setting

Interactlve expert Learner can /nteract W/th z‘he enwronment N t/mes ano’
+ ~query the expert policy at visited states |

Setting is closely related to human-in-the-loop RL
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Mandlekar et al. 2020



IL with an interactive expert

For all algorithms even with an interactive expert, in the worst case,
Suboptimality > SH?/N [RYJR20] |

Cb ‘ 0
@ ‘\ All learners get

stuck at bad state

Hard instance: Reset cliff MDP



IL with an interactive expert

, s It possible to improve the suboptimality of behavior cloning if the expert is interactive” 4

,u recoverablllty assumptlon [RB1 1] For any state S, act|on a’
max, Q*(s a) — Q*(s a) SH |

Interpretation: Expert knows how to “recover” after making a mistake at some
time t and pays an expected cost of at most u.




IL with an interactive expert

Under p-recoverability, in the interactive and tabular setting, DAGGER (FTRL)
- achieves,

uSH log(N)

N

Suboptimality <



IL with function approximation

How do approaches such as BC and Mimic-MD [RYJRZ20]
perform in the presence of function approximation?



IL with linear function approximation

Llnear expert For every state S, the o’eterm/n/st/c ex,oen‘ ,o/ays an act/on
m*(s) € argmax (0, ¢(s,a)) W
gbt(s, a) € | 4 IS @ kKnown representation of state-actions f

Interpretation: Expert policy is realized by a linear multi-class classifier




Linear expert with no MDP interaction

Theorem 2 [RHYLJR21]: ,
' In the no-interaction and linear expert setting, Behavior Cloning achieves, |

dH?1og(N)

N
With d = S recovers bounds in the tabular setting.

Suboptimality <



Linear expert with known transition

Known transmon Learner IS ,orowo’eo’ a o’ataset of N ex,oert demonstrat/ons

Interpretation: carrying out Imitation Learning in a simulation environment.

Image source: Waymo



Linear expert with known transition

' Confidence set classification:

' Consider classification over family of hypotheses, # from 2 — /4

' From a dataset of examples D from a classifier h* return the largest measure of |

| points where h*(x) is known without ambiguity.

Candidates for classifier i*

- Cons_istent with a.ll
candidates for i

Labels ambiguous — ye



Linear expert with known transition

For each 7, consider the Imear classifier ﬂ* S — A. ?

'Given a confidence set classifier with expected loss 7, there exists an IL algorithm such

that,
H
d 2, ¢
Suboptimality < H>'? e =l |

Message: Error compounding (H : dependence) can be broken if confidence
set linear classification is possible to expected loss of o(1).




Linear expert with known transition

' Theorem 4 [RHYLJR21]: |
. If distribution over inputs is uniform over the unit sphere S9! the minimax loss of
;‘ confidence set linear classification is @(d3/ 2/N )

Confidence set linear classification iIs sample
efficient for the uniform distribution

Extending to general distributions?
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