

Intriguing Properties of Vision Transformers

Muzammal Naseer^{1,2}, kanchana Ranasinghe³, Salman Khan², Munawar Hayat⁴, Fahad Khan^{2,5}, Ming-Hsuan⁶

¹Australian National University, Australia ²Mohamed bin Zayed University of Artificial Intelligence, UAE ³Stony Brook University ⁴Monash University, Australia ⁵Linkoping University, Sweden ⁶Google, USA

- Three ViT Families (ViT, Deit, T2T) vs CNN (ResNet-50)
- ViTs show better robustness against
 - Severe occlusions (upto 60% accuracy once 80% occluded)
 - Perturbations (permutations, adversarial noise, natural corruptions)
- ViTs are less biased towards local textures
- ViTs with shape bias can segment without pixel-level supervision

Generalization

- Off-the-shelf ViT features transfer well for few-shot and traditional classification
- Better out of domain generalization

Summary

Vision Transformer (ViT)

- Image \rightarrow Patches
- Tokens: Flattened Patches
- Multi-head self-attention blocks
- Each patch attends to all other patches

Fig. from Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929.

Convolution vs Self-attention

- Compare ViTs with CNNs for **robustness** and **generalization**
 - occlusions, distributional shifts, adversarial and natural perturbations

Convolution	Self-attention
Local-relationships (edges, contours)	Global interactions (b/w distant parts)
Content independent	Content Dependent
Designed to capture inductive biases	Designed to model relations in sequence

Are ViTs Robust to Occlusions?

An image: A sequence of N patches. Drop M patches.

Information Loss (IL) = M/N

- 1. Random PatchDrop: Randomly drop patches
- 2. Salient (foreground) PatchDrop: Drop patches with most salient information
- 3. Non-salient (background) PatchDrop: Drop patches with least salient information

Example: An image of size 224*224*3 is split into 196 patches, each of size 16*16*3. As an example, dropping 100 such patches from the input is equivalent to losing 51% of the image content.

Are ViTs Robust to Occlusions?

Evaluations on ImageNet val. Set (50k images)

ViT's Features are Robust to Information Loss

Correlation b/w features

- occluded vs non-occluded images

ResNet: features before logit layer

ViT: Class Token of last block

Model

Res	Net50	0.32 ± 0.16	0.13 ± 0.11	0.07 ± 0.09	
TnT	Γ-S	0.83 ± 0.08	0.67 ± 0.12	0.46 ± 0.17	
ViT	-L	0.92 ± 0.06	$0.81 {\pm} 0.13$	0.50 ± 0.21	
Dei	t-B	0.90 ± 0.06	0.77 ± 0.10	$0.56 {\pm} 0.15$	
T27	Γ-24	0.80 ± 0.10	0.60 ± 0.15	0.31 ± 0.17	
0.8	8	• • •			
0.6	•				
Correlation 6.0		ViT-L DeiT-B	• TnT-S • T2T_24	ResNet50	
0.2		•			
	•		• • •		
	Dog Structur	e Bird Clothing Vehic	Reptile Insections	turnent Food Furniture	mate

Correlation Coefficient: Random PatchDrop 25% Dropped | 50% Dropped | 75% Dropped

- Visualize the attention maps
- Initial layers attend to all areas
- Deeper layers focus more on leftover (non-occluded) regions

Figure 4: Attention maps (averaged over the entire ImageNet val. set) relevant to each head in multiple layers of an ImageNet pre-trained DeiT-B model. All images are occluded (RandomPatchDrop) with the same mask (bottom right). Observe how later layers clearly attend to non-occluded regions of images to make a decision, an evidence of the model's highly dynamic receptive field.

Shape vs. Texture: Can Transformer Model Both?

- CNNs are biased towards texture than shape; while humans are more biased towards shapes

(a) Texture image 81.4% Indian elephant

10.3% indri

8.2% black swan

(b) Content image

71.1% tabby cat 17.3% grey fox 3.3% Siamese cat

(c) Texture-shape cue conflict

63.9% Indian elephant
26.4% indri
9.6% black swan

Shape vs. Texture: Can Transformer Model Both?

Training without local texture - Stylized ImageNet (SIN)

- Trained ViTs and ResNets on SIN
 - No heavy augmentations (mixup)

Knowledge Distillation from a shape model

 Additional Shape Token to distill knowledge from ResNet50-SIN

Shape Bias Analysis

Fraction of decisions based on either shape or texture

- ViTs have shape bias comparable to Humans

Class-mean shape bias.

- ViTs better than CNNs
- Training on SIN increases shape bias

Shape-biased ViT -- Automated Segmentation

- ViTs concentrate on the foreground & ignore the background once trained with distorted texture
- Automated Segmentation without pixel-level supervision
- Jaccard similarity between ground truth and masks generated from the attention maps of ViT models
 - PASCAL-VOC12 validation set.
- DINO A similar behaviour is observed

Model	Distilled	Token Type	Jaccard Index
DeiT-T-Random	X	cls	19.6
DeiT-T	X	cls	32.2
DeiT-T-SIN	X	cls	29.4
DeiT-T-SIN	✓	cls	40.0
DeiT-T-SIN	✓	shape	42.2
DeiT-S-Random	X	cls	22.0
DeiT-S	X	cls	29.2
DeiT-S-SIN	X	cls	37.5
DeiT-S-SIN	✓	cls	42.0
DeiT-S-SIN	✓	shape	42.4

Does Positional Encoding Preserve the Global Image Context?

- Self-attention is invariant to sequence order
 - ViTs use Positional Encoding for spatial context
- Do ViTs excel under occlusions because of positional encoding?
 - Effect of position encoding towards injecting structure is limited

Shuffle Patches i.e., Randomly permute them - Destroy the spatial structure

ViTs - Context - Position Encoding

- After Shuffling, ViTs better retains accuracy than CNN
- Positional Embedding is not absolutely crucial to recover global context
- w/o encoding, ViT achieves better permute invariance
- More patches help: accuracy + less-sensitive to shuffling

Robustness to Natural Perturbations

Mean corruption error on synthetic common corruptions (e.g., rain, fog, snow and noise). Lower the better.

- ViTs show better robustness against natural perturbations than CNNs
- Training on SIN to achieve higher shape bias makes both CNNs and ViTs vulnerable to perturbations.
- Data Augmentation helps for both CNNs and ViTs. Augmix: ResNet50 trained with augmentations

Trained with Augmentations					Trained withou	t Augmentatior	1		
DeiT-B	DeiT-S	DeiT-T	T2T-24	TnT-S	Augmix	ResNet50	ResNet50-SIN	DeiT-T-SIN	DeiT-S-SIN
48.5	54.6	71.1	49.1	53.1	65.3	76.7	77.3	94.4	84.0

Robustness to Adversarial Perturbations

- Robustness against adversarial patch attack (untargeted, universal patch in white-box setting) [A]
- ViTs exhibit better adversarial robustness
- ImageNet trained models are more robust than SIN, shape-bias vs robustness tradeoff [B]

[A] Brown, Tom B., et al. "Adversarial patch." arXiv preprint arXiv:1712.09665 (2017).

[B] Mummadi etal, "Does enhanced shape bias improve neural network robustness to common Corruptions?" ICLR'21

Effective Off-the-shelf Tokens for Vision Transformer

ImageNet pretrained ViT transferred to CUB

- Linear classifier on class token (or combination)
- Class tokens generated by the deeper blocks are more discriminative for classification
- Can we design an effective ensemble of blocks?
- Class token vs patch-token
 - Comparable performance, compute overhead

Blocks	Class Token	Patch Tokens	Top-1 (%)
Only 12 th (last block)	/	×	68.16 70.66
From 1 st to 12 th	1	×	72.90 73.16
From 9 th to 12 th	1	×	73.58 73.37

Off-the-shelf Features - CNNs vs ViTs

- **Visual Classification:** Diverse datasets for fine-grained recognition, texture classification, traffic sign recognition, specie classification and scene recognition. Classes ranging from 43 to 1394
 - ViTs consistently perform better than CNNs
- **Few-Shot Learning:** Meta-Dataset: dataset of datasets (made up of 10 datasets).
 - Transfer better across domains e.g., QuickDraw

Visual Classification

Few Shot Learning

Conclusions

ViTs show better robustness against

- Occlusions Information Loss
- Permutations Broken Spatial Structure
- Adversarial+Natural Perturbations

ViTs have highly dynamic and flexible receptive field

ViTs can incorporate complimentary info. e.g., texture + shape

ViTs can exhibit shape bias, comparable to humans

ViTs features generalize well across different domains/distributions

Thanks!!!

