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Summary
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Three ViT Families (ViT, Deit, T2T) vs CNN (ResNet-50)
ViTs show better robustness against

- Severe occlusions (upto 60% accuracy once 80% occluded )
- Perturbations (permutations, adversarial noise, natural corruptions)

ViTs are less biased towards local textures
ViTs with shape bias can segment without pixel-level supervision

Generalization

- Off-the-shelf ViT features transfer well for few-shot and traditional classification
- Better out of domain generalization



Vision Transformer (ViT)
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Fig. from Dosovitskiy et al. "An image is worth 16x16 words: Transformers for image recognition at scale." arXiv preprint arXiv:2010.11929.



Convolution vs Self-attention

- Compare ViTs with CNNs for robustness and generalization
occlusions, distributional shifts, adversarial and natural perturbations

Convolution
Local-relationships (edges, contours)
Content independent

Designed to capture inductive biases

Self-attention
Global interactions (b/w distant parts)
Content Dependent

Designed to model relations in sequence



Are ViTs Robust to Occlusions?

1. Random PatchDrop: Randomly drop patches

An image: A sequence of N patches. Drop M patches. 2. Salient (foreground) PatchDrop: Drop patches with
. most salient information
Information Loss (IL) = M/N 3. Non-salient (background) PatchDrop: Drop patches

with least salient information

Original Image Random PatchDrop Salient PatchDrop  Non-Salient PatchDrop

Example: An image of size 224*224*3 is split into 196 patches, each of size 16*16*3. As an example, dropping 100 such patches from
the input is equivalent to losing 51% of the image content.



Are ViTs Robust to Occlusions? Evaluations on ImageNet
val. Set (50k images)
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ViT's Features are Robust to Information Loss

- Visualize the attention maps

- Initial layers attend to all areas

- Deeper layers focus more on leftover (non-occluded)
regions

Correlation b/w features
- occluded vs non-occluded images

ResNet: features before logit layer
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Shape vs. Texture: Can Transformer Model Both?

- CNNs are biased towards texture than shape; while humans are more biased towards shapes

(a) Texture image (b) Content image (c) Texture-shape cue conflict
81.4%  Indian elephant 71.1%  tabby cat 63.9%  Indian elephant
10.3% indri 17.3% grey fox 26.4% indri

82%  black swan 3.3% Siamese cat 9.6% black swan

Geirhos, Robert, et al. "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness." ICLR’19



Shape vs. Texture: Can Transformer Model Both?

Training without local texture - Stylized ImageNet (SIN) Knowledge Distillation from a shape model

- Additional Shape Token to distill knowledge
from ResNet50-SIN

- Trained ViTs and ResNets on SIN

No heavy augmentations (mixup)
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Shape Bias Analysis

Fraction of decisions based on either shape or texture
- ViTs have shape bias comparable to Humans

Class-mean shape bias.
- ViTs better than CNNs
- Training on SIN increases shape bias
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Shape-biased VIT -- Automated Segmentation

- ViTs concentrate on the foreground & ignore the background once
trained with distorted texture

- Automated Segmentation without pixel-level supervision

- Jaccard similarity between ground truth and masks generated from the

attention maps of ViT models
- PASCAL-VOC12 validation set.
- DINO - A similar behaviour is observed

Model | Distilled | Token Type | Jaccard Index
DeiT-T-Random X cls 19.6
DeiT-T X cls 32.2
DeiT-T-SIN X cls 294
DeiT-T-SIN v cls 40.0
DeiT-T-SIN v shape 422
DeiT-S-Random X cls 22.0
DeiT-S X cls 29.2
DeiT-S-SIN X cls 375 DeiT-S DeiT-S-SIN DeiT-S-SIN (Distilled)
DeiT-S-SIN v cls 42.0
DeiT-S-SIN v shape 424

Caron, Mathilde, et al. "Emerging properties in self-supervised vision transformers." arXiv preprint arXiv:2104.14294 (2021).



Does Positional Encoding Preserve the Global Image Context?

- Self-attention is invariant to sequence order
- ViTs use Positional Encoding for spatial context
- Do ViTs excel under occlusions because of positional encoding?
- Effect of position encoding towards injecting structure is limited

rigin -2 X 2 Grid | ‘ x 4Grid 8x8 Grid 14 x 14 rid
Shuffle Patches i.e., Randomly permute them - Destroy the spatial structure



ViTs - Context - Position Encoding

- After Shuffling, ViTs better retains accuracy than CNN
- Positional Embedding is not absolutely crucial to recover global

context

- w/o encoding, ViT achieves better permute invariance 0 4 8
- More patches help: accuracy + less-sensitive to shuffling

With Positional Encoding
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Robustness to Natural Perturbations

Mean corruption error on synthetic common corruptions (e.g., rain, fog, snow and noise). Lower the better.

- ViTs show better robustness against natural perturbations than CNNs
- Training on SIN to achieve higher shape bias makes both CNNs and ViTs vulnerable to perturbations.
- Data Augmentation helps for both CNNs and ViTs. Augmix: ResNet50 trained with augmentations

Trained with Augmentations Trained without Augmentation

DeiT-B DeiT-S DeiT-T T2T-24 TnT-S Augmix’ResNetSO ResNet50-SIN DeiT-T-SIN DeiT-S-SIN

48.5 54.6 71.1 49.1 53.1 653 | 76.7 77.3 944 84.0




Robustness to Adversarial Perturbations

- Robustness against adversarial patch attack (untargeted, universal patch in white-box setting) [A]
- ViTs exhibit better adversarial robustness

- ImageNet trained models are more robust than SIN, shape-bias vs robustness tradeoff [B]
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[A] Brown, Tom B., et al. "Adversarial patch." arXiv preprint arXiv:1712.09665 (2017).
[B] Mummadi etal, “Does enhanced shape bias improve neural network robustness to common Corruptions?” ICLR’21



Effective Off-the-shelf Tokens for Vision Transformer

Blocks Class Token Patch Tokens Top-1 (%
ImageNet pretrained ViT transferred to CUB p-1 (%)
v X 68.16
Only 12" (last block

- Linear classifier on class token (or combination) 4 ( ) v v 70.66
- Class tokens generated by the deeper blocks are more From 1° o 12tF / X 72.90
discriminative for classification v v 73.16

- Can we design an effective ensemble of blocks?
v From 9" to 12" v X 73.58
- Class token vs patch-token v v 73.37

- Comparable performance, compute overhead
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Off-the-shelf Features - CNNs vs ViTs

Visual Classification: Diverse datasets for fine-grained recognition, texture classification, traffic

sign recognition, specie classification and scene recognition. Classes ranging from 43 to 1394
- ViTs consistently perform better than CNNs

Few-Shot Learning: Meta-Dataset: dataset of datasets (made up of 10 datasets).
- Transfer better across domains e.g., QuickDraw
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Conclusions

ViTs show better robustness against

- Occlusions - Information Loss
- Permutations - Broken Spatial Structure
- Adversarial+Natural Perturbations

ViTs have highly dynamic and flexible receptive field
ViTs can incorporate complimentary info. e.g., texture + shape
ViTs can exhibit shape bias, comparable to humans

ViTs features generalize well across different domains/distributions



Thanks!!




