Detecting Anomalous Event Sequences with Temporal Point Processes Oleksandr Shchur¹, Ali Caner Türkmen², Tim Januschowski², Jan Gasthaus², Stephan Günnemann¹ ¹Technical University of Munich, ²Amazon Research Neural Information Processing Systems 2021 ## Temporal point process (TPP) Probabilistic model for continuous-time event data - Server logs - User activity traces - Financial transactions ## Out-of-distribution (OoD) detection Given: Normal sequences $\mathcal{D}_{train} = \{X_1, ..., X_M\}$ that were generated by some unknown TPP \mathbb{P}_{data} Question: Is the new sequence *X* normal or anomalous? ## Out-of-distribution (OoD) detection Given: $\{X_1, \dots, X_M\} \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}_{\text{data}}$ Question: $H_0: X \sim \mathbb{P}_{\text{data}}$ $H_1: X \sim \mathbb{Q}$ for some $\mathbb{Q} \neq \mathbb{P}_{data}$ ## Goodness-of-fit (GoF) testing Given: known distribution \mathbb{P}_{model} Question: $H_0: X \sim \mathbb{P}_{\text{model}}$ $H_1: X \sim \mathbb{Q}$ for some $\mathbb{Q} \neq \mathbb{P}_{model}$ The two problems are similar ⇒ We can use tools for GoF testing to perform OoD detection ## **GoF** hypothesis test $$H_0: X \sim \mathbb{P}_{\mathrm{model}}$$ or $H_1: X \sim \mathbb{Q}$ for $\mathbb{Q} \neq \mathbb{P}_{\mathrm{model}}$ - 1. Pick a test statistic $s: \mathcal{X} \to \mathbb{R}$ - 2. Compute the p-value for the given realization x of X $$p_s(x) = 2 \times \min\{\Pr(s(X) \le s(x)|H_0), 1 - \Pr(s(X) \le s(x)|H_0)\}$$ 3. Reject H_0 if p-value is below a threshold lpha #### **Back to OoD detection** OoD detection hypothesis test $$H_0: X \sim \mathbb{P}_{\mathrm{data}}$$ or $H_1: X \sim \mathbb{Q}$ for $\mathbb{Q} \neq \mathbb{P}_{\mathrm{data}}$ given $\mathcal{D}_{\mathrm{train}} = \{X_1, \dots, X_M\}$ drawn i.i.d. from $\mathbb{P}_{\mathrm{data}}$ - Problem How can we compute the p-value? $p_s(x) = 2 \times \min\{\Pr(s(X) \le s(x)|H_0), 1 \Pr(s(X) \le s(x)|H_0)\}$ - No assumptions about $\mathbb{P}_{\mathrm{data}} \Rightarrow$ cannot compute CDF of $s(X)|H_0$ analytically - ullet Solution: Use the empirical distribution (EDF) of the statistic s(X) on $\mathcal{D}_{ ext{train}}$ #### How to define a test statistic for TPPs? - A TPP is uniquely defined by its compensator Λ^* - \bullet The compensator converts any TPP realization $X=(t_1,\dots,t_N)$ into a sample from the standard Poisson process $Z = (\Lambda^*(t_1), ..., \Lambda^*(t_N))$ • e.g., Kolmogorov-Smirnov, χ -squared, sum-of-squared-spacings ## **Putting everything together** - 1. Fit a TPP model on $\mathcal{D}_{\text{train}} = \{X_1, ..., X_M\}$ - 2. Define statistic s(X) based on the compensator Λ^* of the learned TPP - 3. Approximate CDF of $s(X)|X \sim \mathbb{P}_{\mathrm{data}}$ with the EDF on $\mathcal{D}_{\mathrm{train}}$ - 4. For a test sequence X, compute the p-value using the EDF - 5. Label X as anomalous if p-value is less than chosen α ## **Experiments** - Accurate detection of OoD sequences in simulated and real-world data - Also works for marked sequences with multiple event types | | KS arrival | KS inter-event | Chi-squared | Log-likelihood | 3S statistic | |---|--|--|--|---|--| | Logs — Packet corruption (1%) Logs — Packet corruption (10%) Logs — Packet duplication (1%) Logs — Packet delay (frontend) Logs — Packet delay (all services) | 57.4 ± 1.7
59.2 ± 2.3
81.1 ± 5.2
95.6 ± 1.2
99.8 ± 0.0 | 62.1 ± 0.9 $\underline{97.8} \pm 0.6$ 82.8 ± 5.0 $\underline{98.9} \pm 0.4$ 94.7 ± 1.1 | 66.6 ± 1.8
59.1 ± 2.3
74.6 ± 6.5
99.3 ± 0.1
99.8 ± 0.0 | 75.9 ± 0.1 99.0 ± 0.0 88.1 ± 0.1 90.9 ± 0.0 96.1 ± 0.0 | 95.5 ± 0.3
99.4 ± 0.1
90.9 ± 0.3
97.6 ± 0.1
99.6 ± 0.1 | | STEAD — Anchorage, AK
STEAD — Aleutian Islands, AK
STEAD — Helmet, CA | 59.6 ± 0.2
53.8 ± 0.5
59.1 ± 0.9 | 79.7 ± 0.1
88.8 ± 0.3
98.7 ± 0.0 | 67.4 ± 0.2
62.2 ± 0.9
70.0 ± 0.6 | $ \begin{array}{c} 88.0 \pm 0.1 \\ \underline{97.0} \pm 0.0 \\ \underline{96.9} \pm 0.0 \end{array} $ | 88.3 ± 0.6
99.8 ± 0.0
92.6 ± 0.3 | ### **Summary** - OoD detection and GoF testing are related but different problems - We can use GoF statistics for TPPs to detect anomalous event sequences - The general framework extends to other data types, such a time series Code: github.com/shchur/tpp-anomaly-detection