

Detecting Anomalous Event Sequences with Temporal Point Processes

Oleksandr Shchur¹, Ali Caner Türkmen², Tim Januschowski²,

Jan Gasthaus², Stephan Günnemann¹

¹Technical University of Munich, ²Amazon Research

Neural Information Processing Systems 2021

Temporal point process (TPP)

Probabilistic model for continuous-time event data

- Server logs
- User activity traces
- Financial transactions

Out-of-distribution (OoD) detection

Given: Normal sequences $\mathcal{D}_{train} = \{X_1, ..., X_M\}$ that were generated by some unknown TPP \mathbb{P}_{data}

Question: Is the new sequence *X* normal or anomalous?

Out-of-distribution (OoD) detection

Given: $\{X_1, \dots, X_M\} \stackrel{\text{i.i.d.}}{\sim} \mathbb{P}_{\text{data}}$

Question:

 $H_0: X \sim \mathbb{P}_{\text{data}}$

 $H_1: X \sim \mathbb{Q}$ for some $\mathbb{Q} \neq \mathbb{P}_{data}$

Goodness-of-fit (GoF) testing

Given: known distribution \mathbb{P}_{model}

Question:

 $H_0: X \sim \mathbb{P}_{\text{model}}$

 $H_1: X \sim \mathbb{Q}$ for some $\mathbb{Q} \neq \mathbb{P}_{model}$

The two problems are similar ⇒ We can use tools for GoF testing to perform OoD detection

GoF hypothesis test

$$H_0: X \sim \mathbb{P}_{\mathrm{model}}$$
 or $H_1: X \sim \mathbb{Q}$ for $\mathbb{Q} \neq \mathbb{P}_{\mathrm{model}}$

- 1. Pick a test statistic $s: \mathcal{X} \to \mathbb{R}$
- 2. Compute the p-value for the given realization x of X

$$p_s(x) = 2 \times \min\{\Pr(s(X) \le s(x)|H_0), 1 - \Pr(s(X) \le s(x)|H_0)\}$$

3. Reject H_0 if p-value is below a threshold lpha

Back to OoD detection

OoD detection hypothesis test

$$H_0: X \sim \mathbb{P}_{\mathrm{data}}$$
 or $H_1: X \sim \mathbb{Q}$ for $\mathbb{Q} \neq \mathbb{P}_{\mathrm{data}}$ given $\mathcal{D}_{\mathrm{train}} = \{X_1, \dots, X_M\}$ drawn i.i.d. from $\mathbb{P}_{\mathrm{data}}$

- Problem How can we compute the p-value? $p_s(x) = 2 \times \min\{\Pr(s(X) \le s(x)|H_0), 1 \Pr(s(X) \le s(x)|H_0)\}$
- No assumptions about $\mathbb{P}_{\mathrm{data}} \Rightarrow$ cannot compute CDF of $s(X)|H_0$ analytically
- ullet Solution: Use the empirical distribution (EDF) of the statistic s(X) on $\mathcal{D}_{ ext{train}}$

How to define a test statistic for TPPs?

- A TPP is uniquely defined by its compensator Λ^*
- \bullet The compensator converts any TPP realization $X=(t_1,\dots,t_N)$

into a sample from the standard Poisson process $Z = (\Lambda^*(t_1), ..., \Lambda^*(t_N))$

• e.g., Kolmogorov-Smirnov, χ -squared, sum-of-squared-spacings

Putting everything together

- 1. Fit a TPP model on $\mathcal{D}_{\text{train}} = \{X_1, ..., X_M\}$
- 2. Define statistic s(X) based on the compensator Λ^* of the learned TPP
- 3. Approximate CDF of $s(X)|X \sim \mathbb{P}_{\mathrm{data}}$ with the EDF on $\mathcal{D}_{\mathrm{train}}$
- 4. For a test sequence X, compute the p-value using the EDF
- 5. Label X as anomalous if p-value is less than chosen α

Experiments

- Accurate detection of OoD sequences in simulated and real-world data
- Also works for marked sequences with multiple event types

	KS arrival	KS inter-event	Chi-squared	Log-likelihood	3S statistic
Logs — Packet corruption (1%) Logs — Packet corruption (10%) Logs — Packet duplication (1%) Logs — Packet delay (frontend) Logs — Packet delay (all services)	57.4 ± 1.7 59.2 ± 2.3 81.1 ± 5.2 95.6 ± 1.2 99.8 ± 0.0	62.1 ± 0.9 $\underline{97.8} \pm 0.6$ 82.8 ± 5.0 $\underline{98.9} \pm 0.4$ 94.7 ± 1.1	66.6 ± 1.8 59.1 ± 2.3 74.6 ± 6.5 99.3 ± 0.1 99.8 ± 0.0	75.9 ± 0.1 99.0 ± 0.0 88.1 ± 0.1 90.9 ± 0.0 96.1 ± 0.0	95.5 ± 0.3 99.4 ± 0.1 90.9 ± 0.3 97.6 ± 0.1 99.6 ± 0.1
STEAD — Anchorage, AK STEAD — Aleutian Islands, AK STEAD — Helmet, CA	59.6 ± 0.2 53.8 ± 0.5 59.1 ± 0.9	79.7 ± 0.1 88.8 ± 0.3 98.7 ± 0.0	67.4 ± 0.2 62.2 ± 0.9 70.0 ± 0.6	$ \begin{array}{c} 88.0 \pm 0.1 \\ \underline{97.0} \pm 0.0 \\ \underline{96.9} \pm 0.0 \end{array} $	88.3 ± 0.6 99.8 ± 0.0 92.6 ± 0.3

Summary

- OoD detection and GoF testing are related but different problems
- We can use GoF statistics for TPPs to detect anomalous event sequences
- The general framework extends to other data types, such a time series

Code:

github.com/shchur/tpp-anomaly-detection