

End-to-end Multi-modal Video Temporal Grounding

NeurIPS 2021

Yi-Wen ChenUC Merced

Yi-Hsuan TsaiPhiar

Ming-Hsuan Yang UC Merced, Google Research

Text-Guided Video Temporal Grounding

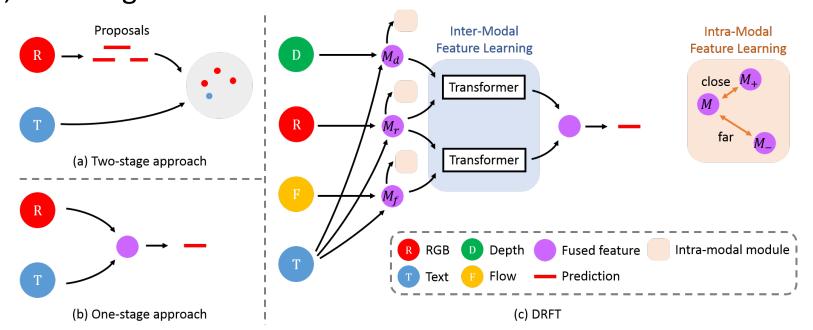
- Goal
 - Identify the starting and ending time of an event based on a natural language description
- Applications
 - Video retrieval, video editing, human-computer interaction
- Challenges
 - Joint understanding of scenes, objects, activities and sentences in videos

Query: "A girl and a guy hug each other"

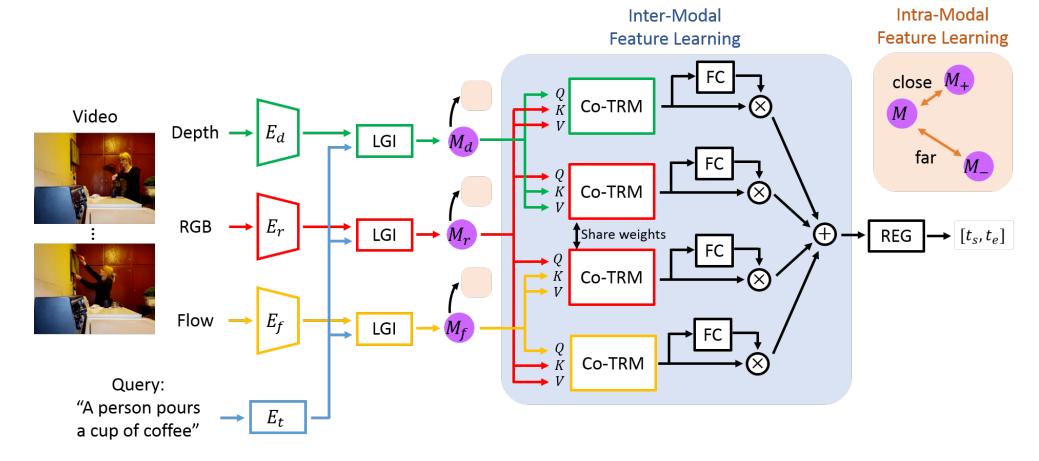
Query: "Train begins to move"

Motivation

- RGB features are affected by background clutters
- Optical flow can identify actions with large motion, e.g., "closing a door", "throwing a pillow"
- Depth helps recognize actions involving objects with distinct shapes, e.g., "sitting in a bed", "working at a table"



Proposed Framework



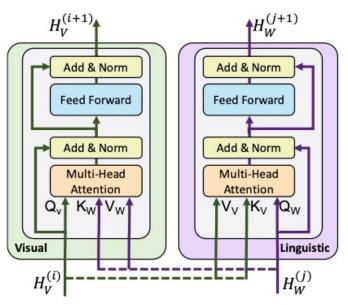
LGI: Local-Global Video-Text Interactions Co-TRM: Co-Attentional Transformer

FC: Fully-Connected Layer

REG: Regression

Inter-Modal Feature Learning

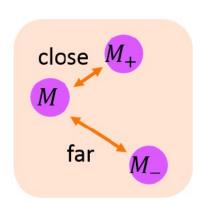
- Co-Attentional Feature Fusion
 - Co-attentional transformer layer [1] with multi-head attention blocks
 - Each block takes a pair of features as input
 - Query (Q) from one modality, key (K) and value (V) from the other modality
- Dynamic Feature Fusion
 - Importance of each modality depends on the input
 - Dynamically learn the weights for each multi-modal feature and linearly combine the features using the weights



Intra-Modal Feature Learning

- Anchor V: input video
- Positive samples V_+ : videos with same action category
- Negative samples V_{-} : videos with different action categories
- Contrastive learning on the multi-modal features M_d , M_r and M_f

$$L_{cl} = -\log \frac{\sum\limits_{M_{+} \in Q_{+}} e^{h(M)^{\top} h(M_{+})/\tau}}{\sum\limits_{M_{+} \in Q_{+}} e^{h(M)^{\top} h(M_{+})/\tau} + \sum\limits_{M_{-} \in Q_{-}} e^{h(M)^{\top} h(M_{-})/\tau}}$$



Experimental Settings

- Language encoder: Bi-LSTM
- Visual encoder: I3D/C3D
- Optical flow: RAFT [1]
- Depth: MiDaS [2]
- Datasets: Charades-STA, ActivityNet Captions
- Evaluation metric
 - Recall at various thresholds of temporal IoU (R@0.3, R@0.5, R@0.7)
 - mean temporal IoU (mIoU)

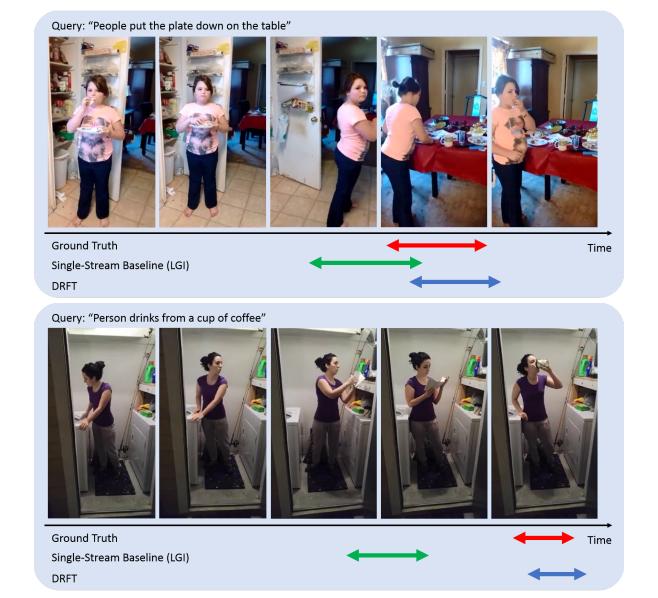
Experimental Results

		Charades-STA				ActivityNet Captions				
	Method	R@0.3	R@0.5	R@0.7	mIoU	R@0.3	R@0.5	R@0.7	mIoU	
-	CTRL [Gao, ICCV'17]	-	21.42	7.15	-	28.70	14.00	20.54	-	
	RWM [He, AAAI'19]	-	36.70	-	-	-	36.90	-	-	
	MAN [Zhang, CVPR'19]	-	46.53	22.72	-	-	-	-	-	
	TripNet [Hahn, BMVC'20]	51.33	36.61	14.50	-	45.42	32.19	13.93	_	
	PfTML-GA [Rodriguez, WACV'20]	67.53	52.02	33.74	-	51.28	33.04	19.26	37.78	
	DRN [Zeng, CVPR'20]	-	53.09	31.75	-	-	42.49/45.45	22.25/24.36	-	
	LGI [Mun, CVPR'20]	72.96	59.46	35.48	51.38	58.52	41.51	23.07	41.13	
RGB	Single-stream DRFT	73.85	60.79	36.72	52.64	60.25	42.37	25.23	43.18	
RGB, flow	Two-stream DRFT	74.26	61.93	38.69	53.92	61.80	43.71	26.43	44.82	
RGB, flow, de	oth Three-stream DRFT	76.68	63.03	40.15	54.89	62.91	45.72	27.79	45.86	

Ablation Study

		Charade	es-STA		ActivityNet Captions				
Method	R@0.3	R@0.5	R@0.7	mIoU	R@0.3	R@0.5	R@0.7	mIoU	
Three-stream baseline	71.13	57.39	34.69	48.21	56.45	38.63	22.05	39.86	
DRFT w/o contrastive loss DRFT w/o learnable weight DRFT w/o transformer	75.41 75.03 74.72	61.87 61.65 61.05	39.02 38.78 38.26	53.65 53.11 52.74	61.59 61.47 61.04	44.50 44.42 43.83	26.48 26.31 25.74	44.61 44.39 43.90	
Three-stream DRFT	76.68	63.03	40.15	54.89	62.91	45.72	27.79	45.86	

Qualitative Results on Charades-STA Dataset



Qualitative Results on ActivityNet Captions Dataset

Conclusions

Code Available at: https://github.com/wenz116/DRFT

- Propose a multi-modal framework for text-guided video temporal grounding by extracting complementary information from RGB, optical flow and depth features
- Design a dynamic fusion mechanism across modalities via co-attentional transformer to effectively learn inter-modal features
- Apply contrastive learning across videos for each modality to enhance intramodal feature representations that are invariant to distracted factors with respect to actions