Validation Free and Replication Robust Volume-based Data Valuation

Xinyi Xu*1, Zhaoxuan Wu*2, Chuan Sheng Foo3, Bryan Kian Hsiang Low1

Department of Computer Science, National University of Singapore¹
Institute of Data Science, National University of Singapore²
Institute of Infocomm Research, Agency for Science, Technology and Research (A*STAR)³

Data Valuation in Machine Learning

Motivation & Goal

Valuation specific to validation

Data Valuation via Diversity of Data

Better diversity in data can result in better learning performance.

Data Valuation via Diversity of Data

Better diversity in data can result in better learning performance.

- Intuition
 - \circ More *inherent diversity* in data \rightarrow better generalizability of learner \rightarrow higher value.
- Connection between the determinant of data matrix and diversity.
 - Determinantal Point Processes (DPPs) [1]
 - Geometric interpretation
- Interestingly, we also eliminate the need for a validation when using diversity.

Data diversity via *Volume*

Definition 1 (Volume)

$$\mathbf{X} \in \mathbb{R}^{n \times d}, \operatorname{Vol}(\mathbf{X}) \coloneqq \sqrt{|(\mathbf{X}^{\top}\mathbf{X})|} = \sqrt{|\mathbf{G}|}$$

- Higher volume (diversity) ⇔ better learning performance ⇔ higher value.
 - Larger volume ⇔ more accurate pseudo-inverse (Propositions. 1,2).
 - Larger volume \Leftrightarrow lower mean squared error (MSE) for d=1 (Proposition. 3).
- Additional properties: (Proposition. 4)
 - Non-negativity
 - Monotonicity (Lemma. 1)

Data Replication

• Suppose the value of

is $\nu(\mathbf{X})$, what should be the value of

 If data replication via direct copying <u>strictly increases</u> the total value, then a dishonest data provider may exploit the valuation method by replication.

Replication Robust Volume (RV)

- Propose a robust definition to balance the value of diversity and repetition.
 - \circ Construct a 'compressed' version of the original data matrix \mathbf{X} by grouping and representing data points via discretized cubes of the input space.

$$RV(\mathbf{X}; \omega) := Vol(\tilde{\mathbf{X}}) \times \prod_{i \in \Psi} \rho_i$$
, where $\rho_i := \sum_{p=0}^{\phi_i} \alpha^p, \alpha \in (0, 1)$.

- Discretize the input domain with a coefficient ω .
- \circ For each discretized cell $i \in \Psi$,
 - Compute a statistic (e.g. mean) for all data points in it and use it to construct $\tilde{\mathbf{X}}$.
 - Count the number of data points in it, ϕ_i , and use it to compute the multiplicative coefficient ρ_i .

Replication Robust Volume (RV)

$$ho_{red} = \sum_{p=0}^{2} \alpha^{p}$$

 $RV(\mathbf{X}; \omega) := Vol(\tilde{\mathbf{X}}) \times \prod_{i \in \Psi} \rho_i$, where $\rho_i := \sum_{p=0}^{\phi_i} \alpha^p, \alpha \in (0, 1)$.

Replication Robustness Defined via Inflation

• Suppose the value of \mathbf{X} is $\nu(\mathbf{X})$, and be value of \mathbf{X} is $\nu(\mathbf{X},3)$.

- Define inflation caused by replication of c times as: $\inf action(\mathbf{X}, c) = \frac{\nu(\mathbf{X}, c)}{\nu(\mathbf{X})}$.
- Define replication robustness as: $\gamma_{\nu} = \frac{\nu(\mathbf{X})}{\sup_{c>1} \nu(\mathbf{X},c)}$.

High robustness should curb inflation from replication.

Replication Robust Volume (RV)

• RV is robust (Proposition. 6).

$$\circ \quad \gamma_{\rm RV} \ge (1-\alpha)^{|\Psi|}$$

• RV is flexible between $\gamma = 0$ and the optimal $\gamma = 1$ (Proposition. 7)

- RV is similar to the original volume formulation in terms of relative values (Proposition. 5).
 - High RV indicates high diversity and thus better learning performance.

Experiments

 Validating volume/robust volume is a good measure for learning performance via diversity

2. Demonstrating RV produces consistent valuation with existing baselines, *without requiring validation*

3. Replication robustness

Experiments - High RV means High performance

Datasets:

- Credit card transaction prediction (8);
- Uber & Lyft carpool ride price prediction (12);
- UK Used Car price prediction (5);
- TripAdvisor Hotel review rating prediction (8).
- The numbers represent the dimension of the standardized features.
- 8 data providers, so 8 data submatrices.
- Setting: we gradually add/remove the submatrices one at a time and monitor the performance of the current learner.
- Ordering: highest RV first, lowest RV first and random.

Experiments - High RV means High performance

- Removing high RV data increases both train/test losses quickly.
- Adding high RV data reduces both train/test losses quickly.

Experiments - RV Shapley Value v.s. Baselines

For a fair comparison, we extend RV to Shapley formulation

$$\begin{aligned} \text{RVSV}_m &= \tfrac{1}{M!} \sum_{\mathcal{C} \subseteq \mathcal{M} \setminus \{S_m\}} [|\mathcal{C}|! \times (M - |\mathcal{C}| - 1)!] \times [\text{RV}(\mathbf{X}_{\mathcal{C} \cup \{S_m\}}; \omega) - \text{RV}(\mathbf{X}_{\mathcal{C}}; \omega)] \end{aligned} \quad \text{wher}$$

$$e \qquad \mathcal{C} \subseteq \mathcal{M} \coloneqq \{S_1, \dots, S_M\}$$

- We compare with
 - Leave-One-Out (LOO) value
 - Validation Loss Shapley Value (VLSV)
 - Information Gain Shapley Value (IGSV) [2]

Experiments - RV Shapley Value v.s. Baselines

- We consider the 6D Hartmann Function [5] defined over $[0,1]^6$ and four baseline data distributions:
 - o [i.i.d.] where 3 data submatrices each contains 200 samples.
 - o [ascending size] where 3 data submatrices contains 20, 50 and 200 i.i.d. samples resp.
 - o [disjoint domains] where \mathbf{X}_{S_1} , \mathbf{X}_{S_2} & \mathbf{X}_{S_3} sample from $[0,1/3]^6, [1/3,2/3]^6, [2/3,1]^6$ input domains resp.
 - \circ [*supersets*] where $\mathbf{X}_{S_1} \subset \mathbf{X}_{S_2} \subset \mathbf{X}_{S_3}$ with sizes 200, 400 and 600 resp.

Experiments - Replication Robustness

Datasets:

- TripAdvisor Hotel review rating (8)
- California housing price prediction (CaliH) (10)
- Kings county housing sales prediction (KingH) (10)
- US census income prediction (USCensus) (16)
- Age estimation from facial images (FaceA) (10)
- The numbers represent the dimension of the standardized features.
- 3 data providers, so 3 data submatrices.
- Comparison baselines: LOO, VLSV, LOO, VSV and RVSV.

Experiments - Replication Robustness

- TripAdvisor Hotel Review Text Dataset.
- We utilize GloVe[7] word embedding and a bidirectional LSTM with FC of 8 hidden units.
- i.i.d. Sample \mathbf{X}_{S_1} , \mathbf{X}_{S_2} , \mathbf{X}_{S_3} , replicated for 0, 2, 10 times respectively.
- Darker/lighter shades denote the valuations before/after replication.
- Both IGSV & VSV are not robust to replication as the value for X_{S_3} increased due to replication.

Experiments - Asymptotic Replication Robustness

- Value of X_{S_1} vs. the replication factor c up to 100 under i.i.d. distribution.
- A more stable curve means better robustness.
- RVSV is robust as well as VLSV, while IGSV and VSV increase with replication c.

Conclusion

- We proposed and designed Robust Volume (RV) valuation that is
 - [validation free] Decoupled valuation task from validation, which has developed as a norm in current literature.
 - o [replication robust] Circumvented unbounded scaling of replication in naive volume.
 - [theoretically sound] Theoretically show that larger volume leads to better learning performance.
 - [efficient] No model retraining is required.
 - [versatile] Can be combined with Shapley value to enhance fairness.
 - o [interpretable] Assigns higher value to data that lead to high performance.
 - [useful in practice] Empirically works well even in complex models including DNNs.

Thank you!

• See you at the conference!

