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Motivation

• Main principle in reinforcement learning: Find an op-
timal policy by interaction with an environment.

• Local gradient-based policy optimization achieves
state-of-the-art performance.

• Exploration is usually done via random samples.
• Global Bayesian optimization (BO) promises

sample-efficient optimization through active explo-
ration.

• Global optimization in high-dimensional search
spaces is a challenging problem to solve.

• Our proposed algorithm (GIBO) reduces gradient un-
certainty through active sampling.

• GIBO improves sample-efficiency of gradient-based
methods compared to non-active sampling
baselines.
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Policy search & Bayesian optimization

Policy search
• Find a local optimal policy in the space

that maps policy parameters to their
episodic reward:

J(θ) = Eπθ

[
I∑

i=0

ri

]
.

• Update parameter with gradient-based
optimizer:

θt+1 = θt + η · ∇θJ
∣∣
θ=θt

.

Bayesian optimization
• Global black-box optimization method.
• Probabilistic model of the objective

function f(x), e.g. Gaussian process (GP).
• Acquisition function α(x) that determines

points with the most information for the
global optimum.
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Gradient Information with BO

• Combine the strengths of both worlds: Local
search can handle high-dimensional search
spaces and global BO is sample-efficient with
active exploration.

• Probabilistic surrogate model of objective
function J(θ) and its Jacobian ∇θJ .

• Acquisition function α(θ) that determines
points for an accurate gradient estimate at the
current point θt.

• Measures the decrease in the Jacobian’s
variance at θt when observing a new point θ.

• Iterative algorithm:
1. Sample points with acquisition function for a

gradient estimate.
2. Update with gradient based optimizer.
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Acquisition function

• Measures the decrease in the Jacobian’s variance at θt when observing a new point θ:

α(θ | θt,D) = E [Tr (Σ′(θt | D))− Tr (Σ′ (θt | {D, (θ, y)}))].

• Expected difference between the Jacobian’s variance Σ′(θt | D) before and the Jacobian’s
variance Σ′(θt | {D, (θ, y)}) after observing a new point (θ, y).

• Where Σ′(θt | D) is the variance of the Jacobian’s GP model evaluated at θt.

• A property of the Gaussian distribution is that the covariance function is independent of
the observed targets y:

arg max
θ

α(θ | θt,D) = arg min
θ

Tr (Σ′ (θt | [X, θ])),

with the virtual data set [θ1, . . . , θn, θ] =: [X, θ].
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Synthetic experiments
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Gym and MuJoCo
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Summary and contributions

• Novel policy search algorithm that combines
• active sampling,
• surrogate modeling,
• local search with approximate gradient descent.

• Contributions
• Significantly improved sample complexity on synthetic objective functions.
• Solved RL benchmarks in a sample efficient manner.
• Reduce reward variance compared to non-active sampling baselines.
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