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Neighborhood Reconstructing Autoencoder (NRAE)

is a graph-based autoencoder that explicitly accounts for 
the local connectivity and geometry of the data, and 
consequently learns a more accurate data manifold and 
representation.
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Traditional Manifold Learning

2. Compute low-
dimensional embedding

1. Represent data 
manifold as a graph



Autoencoder-Based Manifold Learning

𝑔𝜙 𝑓𝜃𝑥 𝑧 𝑥
encoder decoder

𝐹𝜃,𝜙 ≔ 𝑓𝜃 ∘ 𝑔𝜙

min
𝜃,𝜙

෍

𝑖

||𝐹𝜃,𝜙 𝑥𝑖 − 𝑥𝑖||
2



Autoencoder-Based Manifold Learning

𝑔𝜙 𝑓𝜃

Encoder Decoder

Data space Latent space Data space



𝑔𝜙 𝑓𝜃

encoder decoder

Autoencoder-Based Manifold Learning

Data space Latent space Data space



Autoencoder-Based Manifold Learning

𝑔𝜙 𝑓𝜃

encoder decoder

Coordinate chart

Data space Latent space Data space



Smooth learned manifold
(ideal case)

Observed data

Example: One-Dimensional Manifold

2-d data space 2-d data space1-d latent space

DecoderEncoder



Autoencoders sometimes learn the 
wrong manifold

2. Wrong local connectivity1. Overfitting
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Clean observed data

vs

Learned manifold can have the wrong local geometry

Indistinguishable !

How to simultaneously resolve these two issues: 
i) overfitting and ii) wrong local geometry
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Key Insight: Use the Neighborhood Graph

Observed data Candidate 12-nn graph Candidate 3Candidate 2

Correct!

Research Question: 
How to exploit the neighborhood graph to help the autoencoder 

learn a more accurate manifold?



Existing Graph-Based Autoencoders

• Topological Autoencoder (M. Moor et al, ICML 2020)

• Witness Autoencoder (S. Schoenenberger et al, NeurIPS 2020 Workshop)

• Geometry Regularized Autoencoder (Andres F. Duque et al, ICBDB 2020) 

• Structure-Preserving Autoencoder (Xingyu Chen et al, TNNLS 2021)



Existing Graph-Based Autoencoders

The above methods focus primarily on regularization of the latent space 
distribution: the regularization terms contain the encoder function only
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• Witness Autoencoder (S. Schoenenberger et al, NeurIPS 2020 Workshop)
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Minimizing a neighborhood reconstruction loss



Definition) Neighborhood Reconstruction Loss
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Observed data 2-nn graph

First construct a neighborhood graph
Denote the neighborhood set of 𝑥 by 𝒩(𝑥)
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Definition) Neighborhood Reconstruction Loss

• The neighborhood point reconstruction at 𝑥′ ∈ 𝒩 𝑥 is a local quadratic approximation 
of the composition 𝐹𝜃,𝜙(𝑥

′): = 𝑓𝜃 ∘ 𝑔𝜙(𝑥′) with respect to 𝑥, i.e., for 𝑥 = (𝑥1, … , 𝑥𝐷),

෨𝐹𝜃,𝜙 𝑥′; 𝑥 ≔ 𝐹𝜃,𝜙 𝑥 +෍

𝑖

𝜕𝐹𝜃,𝜙

𝜕𝑥𝑖
𝑥 𝑥′ − 𝑥 𝑖 +

1

2
෍

𝑖,𝑗

𝜕2𝐹𝜃,𝜙

𝜕𝑥𝑖𝜕𝑥𝑗
𝑥 𝑥′ − 𝑥 𝑖 𝑥′ − 𝑥 𝑗 .

• A linear approximation can also be used in place of a quadratic approximation.
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• The neighborhood reconstruction loss enforces the local smoothness of the autoencoder, 
where “local” is specified by the neighborhood graph.



• We find that approximating the decoder, i.e., enforcing the smoothness of the 
decoder, plays a key role in learning the correct manifold.
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• We find that approximating the decoder part, i.e., enforcing the smoothness of the 
decoder, plays a key role in learning the correct manifold.

• We approximate the decoder part only, i.e., the neighborhood reconstruction loss 
for 𝒩(𝑥) is

෍

𝑥′∈𝒩(𝑥)

||𝑥′ − ሚ𝑓𝜃 𝑔𝜙(𝑥
′); 𝑔𝜙(𝑥) ||2 ,

where ሚ𝑓𝜃 𝑧′; 𝑧 is a local quadratic approximation of 𝑓𝜃(𝑧′) with respect to 𝑧.

Definition) Neighborhood Reconstruction Loss



Geometric Interpretation of 
the Neighborhood Reconstruction Loss
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Remarkably Simple Implementation



Some Experimental Results

NRAE-L : NRAE with linear approximation of the decoder 
NRAE-Q : NRAE with quadratic approximation of the decoder



De-noising Property

Ground-truth 
manifold

+ noisy samples

Vanilla AE NRAE-L (ours) NRAE-Q (ours)

Given a set of corrupted observed data, the NRAE (for both linear and quadratic 
approximations) produces smooth decoded manifolds 



Learning the Correct Local Connectivity

Training set
Vanilla AE

NRAE-L
NRAE-Q

1-d latent 
space axis

Rotated MNIST digit 3 Shifted MNIST digit 7

1-d latent 
space axis

NRAE learns the correct order of the set of rotated/shifted images, and can generate 
continuously varying images (unlike the vanilla AE, where discontinuities are marked 
by orange boxes).



Manifold Learning Performance

• AE (Rumelhart et al., 1986)

• VAE (D. P. Kingma et al., ICLR 2014)

• WAE (I. Tolstikhin et al., ICLR 2018)

• DAE (P. Vincent et al., JMLR 2010)

• CAE (S. Rifai et al., ICML 2011)

• GRAE (Andres F. Duque et al., ICBDB 2020) 

• SPAE (Xingyu Chen et al., TNNLS 2021)

We compare manifold learning performance (measured by the test set 
reconstruction error) of NRAE-L and NRAE-Q against the following 
baseline algorithms:



Table 1) The test set reconstruction errors of the standard image datasets. The size column 
indicates the dataset size (small or large). The best and second-best results are colored red 
and blue, respectively (lower-the-better). 

Manifold Learning Performance



Conclusion

• We propose the NRAE, a graph-based autoencoder that resolves the 
overfitting and wrong local connectivity issues. 

• The decoder approximation is more important.

• The implementation is remarkably easy and simple.

• Experimental results show that manifold learning performance is 
significantly improved.



More in the Paper

• Diverse experimental results

• Relation to local polynomial regression

• Convergence to the vanilla autoencoder

• Graph construction and kernel design

• Special case: linear decoder function

…and many more!



Thank you for listening!

Contact: yhlee@robotics.snu.ac.kr
Code: https://github.com/Gabe-YHLee/NRAE-public

mailto:yhlee@robotics.snu.ac.kr

