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Neighborhood Reconstructing Autoencoder (NRAE)

is a graph-based autoencoder that explicitly accounts for
the local connectivity and geometry of the data, and
consequently learns a more accurate data manifold and
representation.
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Manifold Learning
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Traditional Manifold Learning

1. Represent data 2. Compute low-
manifold as a graph dimensional embedding



Autoencoder-Based Manifold Learning
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Example: One-Dimensional Manifold

Observed data

Encoder
—>

2-d data space 1-d latent space 2-d data space



Autoencoders sometimes learn the
wrong manifold

1. Overfitting 2. Wrong local connectivity




1. Learned manifold can overfit the training data

Noisy observed data




1. Learned manifold can overfit the training data

Noisy observed data X

overfitting



2. Learned manifold can have the wrong local
connectivity

Clean observed data
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2. Learned manifold can have the wrong local

connectivity
Clean observed data \/ X
:. o > S

Indistinguishable
reconstruction errors



How to simultaneously resolve these two issues:

i) overfitting and ii) wrong local geometry
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Key Insight: Use the Neighborhood Graph

Observed data
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Key Insight: Use the Neighborhood Graph

Candidate 3




Research Question:

How to exploit the neighborhood graph to help the autoencoder
learn a more accurate manifold?




Existing Graph-Based Autoencoders

* Topological Autoencoder (M. Moor et al, ICML 2020)

 Witness Autoencoder (s. Schoenenberger et al, NeurlPS 2020 Workshop)

e Geometry Regularized Autoencoder (Andres F. Duque et al, ICBDB 2020)
Structure-Preserving Autoencoder (xingyu Chen et al, TNNLS 2021)



Existing Graph-Based Autoencoders

* Topological Autoencoder (M. Moor et al, ICML 2020)

 Witness Autoencoder (s. Schoenenberger et al, NeurlPS 2020 Workshop)

e Geometry Regularized Autoencoder (Andres F. Duque et al, ICBDB 2020)
Structure-Preserving Autoencoder (xingyu Chen et al, TNNLS 2021)

The above methods focus primarily on regularization of the latent space
distribution: the regularization terms contain the encoder function only
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Neighborhood Reconstructing Autoencoder (NRAE)
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Minimizing a neighborhood reconstruction loss




Definition) Neighborhood Reconstruction Loss

First construct a neighborhood graph

Observed data 2-nn graph

[0
2 A




Definition) Neighborhood Reconstruction Loss

First construct a neighborhood graph
Denote the neighborhood set of x by N (x)
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Definition) Neighborhood Reconstruction Loss

* The neighborhood point reconstruction at x' € N (x) is a local quadratic approximation
of the composition Fg 4 (x"): = fe g (x") with respect to x, i.e., for x = (x1,...,x"),

2Fy
g ('3 ) —Fg¢<x>+z 2L (@) =0+ Zzaxla%)(x — 0l = ).

* A linear approximation can also be used in place of a quadratic approximation.
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Definition) Neighborhood Reconstruction Loss

The neighborhood point reconstruction at x' € N (x) is a local quadratic approximation
of the composition Fy ¢ (x"): = fe g (x") with respect to x, i.e., for x = (x, ..., xP),

2Fy
g ('3 ) —Fg¢<x>+z 2L (@) =0+ Zzaxla%)(x — 0l = ).

The neighborhood reconstructlon loss for N'(x) is the sum of the neighborhood point
reconstruction errors:

DI = Py (01
x"eN (x)
The neighborhood reconstruction loss enforces the local smoothness of the autoencoder,
where “local” is specified by the neighborhood graph.




The Decoder is More Important

 We find that approximating the decoder, i.e., enforcing the smoothness of the
decoder, plays a key role in learning the correct manifold.
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 We find that approximating the decoder, i.e., enforcing the smoothness of the
decoder, plays a key role in learning the correct manifold.
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Definition) Neighborhood Reconstruction Loss

 We find that approximating the decoder part, i.e., enforcing the smoothness of the
decoder, plays a key role in learning the correct manifold.

 We approximate the decoder part only, i.e., the neighborhood reconstruction loss
for N'(x) is

> = fo(ge ) g I,

x"eN (x)
where fg (z'; z) is a local quadratic approximation of fy(z') with respect to z.
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Geometric Interpretation of
the Neighborhood Reconstruction Loss
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Remarkably Simple Implementation

def point _recon_loss(encoder, decoder, x|
z = ecnoder(x
recon_x = decoder(z

return norm(x-recon_x)**2

def jvp(f, x, v
return (Dot product between Jacobian of "f" at the point "x" and a vector "v"

def neighborhood recon loss(encoder, decoder, x, x n
"""linear approximation of the decoder 1is used.
New arg:

Xx_n: a neighborhood point of "x"™ ("x_n

can be "x" itself)

z = encoder(x

Z_ n = encoder(x_n

recon_x = decoder(x

return norm(x_n - recon_x - jvp(decoder, z, v=z_n-z))**2



Some Experimental Results

NRAE-L : NRAE with linear approximation of the decoder
NRAE-Q : NRAE with quadratic approximation of the decoder



De-noising Property
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manifold
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Given a set of corrupted observed data, the NRAE (for both linear and quadratic
approximations) produces



Learning the Correct Local Connectivity

Rotated MNIST digit 3 Shifted MNIST digit 7

Training set p 777277717777 77777777
Vanilla AE 777 777 P 7P 777
NRAE-L p 7797 77177177 77777277777
NRAE-Q p 7 7 7 717717777777777777

1-d latent ‘ 1-d latent
space axis space axis

NRAE learns the correct order of the set of rotated/shifted images, and can generate
(unlike the vanilla AE, where



Manifold Learning Performance

We compare manifold learning performance (measured by the test set
reconstruction error) of NRAE-L and NRAE-Q against the following
baseline algorithms:

* AE (Rumelhart et al., 1986)

 VAE (D.P.Kingma et al., ICLR 2014)

* WAE (1. Tolstikhin et al., ICLR 2018)

* DAE (P. Vincent et al., IMLR 2010)
 CAE (s.Rifai et al., ICML 2011)

* GRAE (Andres F. Duque et al., ICBDB 2020)
* SPAE (Xingyu Chen et al., TNNLS 2021)



Manifold Learning Performance

Table 1) The test set reconstruction errors of the standard image datasets. The size column
indicates the dataset size (small or large). The best and second-best results are colored red
and blue, respectively (lower-the-better).

Dataset Size | AE VAE WAE DAE CAE GRAE SPAE NRAEL  NRAE-Q
MNIST S 0.01002 001091 001009 000999 000998 001004  0.00989  0.00953 0.00968
NS L 0.00688 000756 000690 000684  0.00692 000696  0.00694 0.00649 0.00683
S— S 0.01485 001652 001428 001446 001319 001331 001363 0.01289 0.01277
: L 001118 001235 001106 001099 001052 001060 001065  0.01060 0.01044
EMNIST S 0.03267 003234 003283  0.03280  0.03279 003206 003268  0.0307] 0.03021
- L 0.02844 002963 002776  0.02814 002762 002753 002732 0.02564 0.02602
Omnislot S 0.03038 003627 003078  0.03068  0.02714 002967  0.02889  0.02668 0.02631
mnigio L 0.02704 003192  0.02728 002696  0.02567 002648  0.02644 0.02578 0.02539
SVIIN S 0.00320 000420 000320 000369  0.00273 000317 000307  0.00202 0.00192
SV L 0.00174 000204 000190 000177 000178 000173 000175  0.00148 0.00147
CIFAR 10 S 0.01466 001620 001431 001427 001208 001452 001504  0.00768 0.00691
. L 0.00960 001123 000863 00090  0.00755 000832  0.00898  0.00629 0.00587
CIFAR 100 S 0.01465  0.01713 001463 001484 001369 001391 001477  0.00765 0.00717
A L 0.01015 001064 000951 000862 000842 000910 000912  0.00678 0.00635
CELEBA S 0.00780 000937  0.00830  0.00782 : 000814  0.00861 0.00608 0.00747
- L 0.00613 000646 000630  0.00590 : 000595  0.00665 0.00563 0.00565




Conclusion

* We propose the NRAE, a graph-based autoencoder that resolves the
overfitting and wrong local connectivity issues.

* The decoder approximation is more important.
 The implementation is remarkably easy and simple.

* Experimental results show that manifold learning performance is
significantly improved.



More in the Paper

* Diverse experimental results

* Relation to local polynomial regression
* Convergence to the vanilla autoencoder
* Graph construction and kernel design

* Special case: linear decoder function

...and many more!



Thank you for listening!

Contact: yvhlee@robotics.snu.ac.kr
Code: https://github.com/Gabe-YHLee/NRAE-public
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