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Distributed/Federated Learning

Distributed                                         Federated – “cross device”                                  Federated – “cross silo”
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Communication Is a Bottleneck 

Parameter server 

NN Model

* McMaham, et al. "Communication-Efficient Learning of Deep Networks from Decentralized Data." AISTATS, 2017.
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Communication Is a Bottleneck 

➢ Choose a subset of devices
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Communication Is a Bottleneck 

➢ Upload the NN model to chosen devices
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Communication Is a Bottleneck 

𝑤𝑖 ← 𝑤𝑖 − 𝜂𝛻𝓁(𝑤𝑖; 𝑏)

➢ Devices perform local training
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Communication Is a Bottleneck 

➢ Devices transmit gradient updates (Δ𝑤𝑖 ≜ 𝑤𝑖 −𝑤)
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Communication Is a Bottleneck 

𝑤 ← 𝑤 +
1

𝑛
σ𝑖=1
𝑛 Δ𝑤𝑖

➢ Averaging the updates and updating the model
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Communication Is a Bottleneck 

➢ And so on …
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Reducing Communication 

➢ Compression (reducing message size)  

➢ Increasing computation to communication ratio
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𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆: 𝒗𝒆𝒄𝒕𝒐𝒓 𝑵𝒐𝒓𝒎𝒊𝒍𝒊𝒛𝒆𝒅 𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒓𝒆𝒅 𝑬𝒓𝒓𝒐𝒓 𝒗𝑵𝑴𝑺𝑬 ≜
𝔼 𝑥 − Ƹ𝑥 2

2

𝑥 2
2

Vector Estimation

𝑥 ∈ ℝ𝑑
Compressed message 𝑀

ො𝑥 ∈ ℝ𝑑

(e.g., NN gradient)

Compress (lossy):Decompress:

12
3
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𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆: 𝑵𝒐𝒓𝒎𝒊𝒍𝒊𝒛𝒆𝒅𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒓𝒆𝒅 𝑬𝒓𝒓𝒐𝒓 𝑵𝑴𝑺𝑬 ≜
𝔼 𝑥𝑎𝑣𝑔 − ෞ𝑥𝑎𝑣𝑔 2

2

1
𝑛
σ𝑖=1
𝑛 𝑥𝑖 2

2

• 𝑥𝑎𝑣𝑔 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

• ෟ𝑥𝑎𝑣𝑔 is the estimate of 𝑥𝑎𝑣𝑔

ෟ𝑥𝑎𝑣𝑔 ∈ ℝ
𝑑

𝑥1 ∈ ℝ
𝑑

𝑥2 ∈ ℝ
𝑑

…

𝑥𝑛 ∈ ℝ
𝑑

𝑀1

𝑀2

𝑀𝑛

Distributed Mean Estimation
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𝑴𝒊𝒏𝒊𝒎𝒊𝒛𝒆: 𝑵𝒐𝒓𝒎𝒊𝒍𝒊𝒛𝒆𝒅𝑴𝒆𝒂𝒏 𝑺𝒒𝒖𝒓𝒆𝒅 𝑬𝒓𝒓𝒐𝒓 𝑵𝑴𝑺𝑬 ≜
𝔼 𝑥𝑎𝑣𝑔 − ෞ𝑥𝑎𝑣𝑔 2

2

1
𝑛
σ𝑖=1
𝑛 𝑥𝑖 2

2

• 𝑥𝑎𝑣𝑔 =
1

𝑛
σ𝑖=1
𝑛 𝑥𝑖

• ෟ𝑥𝑎𝑣𝑔 is the estimate of 𝑥𝑎𝑣𝑔

ෟ𝑥𝑎𝑣𝑔 ∈ ℝ
𝑑

𝑥1 ∈ ℝ
𝑑

𝑥2 ∈ ℝ
𝑑

…

𝑥𝑛 ∈ ℝ
𝑑

𝑀1

𝑀2

𝑀𝑛

One-bit Distributed Mean Estimation
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One-bit Distributed Mean Estimation
Previous Works

[1]  Suresh, et al. "Distributed mean estimation with limited communication." ICML, 2017.

[2]  Konečný, et al. "Randomized distributed mean estimation: Accuracy vs. communication." Frontiers in Applied Mathematics and Statistics, 2018.

[3]  Safaryan, et al. "Uncertainty principle for communication compression in distributed and federated learning and the search for an optimal compressor." arXiv, 2020.

[4]  Caldas, et al. "Expanding the reach of federated learning by reducing client resource requirements." arXiv, 2018.

[5]  Lyubarskii, et al. "Uncertainty principles and vector quantization." IEEE Transactions on Information Theory, 2010.

bits/client (𝒙𝒊 ∈ ℝ
𝒅) NMSE

[1] 𝑂 𝑑 𝑂
log 𝑑

𝑛

(1) 
, 𝑂

1

𝑛

(2)

[2] 𝑑(1 + 𝑜 1 ) 𝑂
𝑟⋅𝑅

𝑛

[3]
(also see [4, 5])

𝜆 ⋅ 𝑑 1 + 𝑜 1 ,  𝜆 > 1 𝑂
𝜆2

𝜆−1
4
⋅ 𝑛

DRIVE 
(this work)

𝑑(1 + 𝑜 1 ) 𝑂
1

𝑛
; for 𝑑 ≫ 1:

𝜋
2
− 1

𝑛
≈
0.571

𝑛
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One-bit/coordinate in DNN training 
Previous Works

➢ 1 bit/coordinate:

• 1-bit SGD [INTERSPEECH, 2014]

• SignSGD [ICML, 2018-9][ICLR, 2019]

• SIGNUM [ICLR, 2019]

• …

➢ Few bits/coordinate:

• TernGrad [NeurIPS, 2017] 

• QSGD [NeurIPS, 2017] 

• Sketched-SGD [NeurIPS, 2019]

• FetchSGD [ICML, 2020]

• …

up to 32X savings in 

parameter-update 
communication compared to 

non-compressed solution
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Notations and Definitions  
Rotation

𝑥

ℛ 𝑥

➢ 𝑅 is a rotation matrix (𝑅−1𝑅 = 𝑅𝑇𝑅 = 𝐼)  

𝑥

ℛ 𝑥

ℛ−1 ℛ 𝑥 ≜ 𝑅𝑇𝑅 ⋅ 𝑥 = 𝑥 ∈ ℝ𝑑ℛ 𝑥 ≜ 𝑅 ⋅ 𝑥 ∈ ℝ𝑑

Rotation: Inverse rotation:

16



Notations and Definitions
Sign

𝑥

𝑠𝑖𝑔𝑛 𝑥

➢ 𝑠𝑖𝑔𝑛 𝑥 ∈ −1,1 𝑑
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Notations and Definitions
Scale

➢ 𝑆 ∈ ℝ is a scale

𝑥
𝑆 ⋅ 𝑥
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DRIVE - Deterministically RoundIng
randomly rotated VEctors
➢ 𝑅 is a rotation matrix  

➢ ℛ 𝑥 ≜ 𝑅 ⋅ 𝑥 ∈ ℝ𝑑

➢ 𝑆 ∈ ℝ is a scale

➢ 𝑠𝑖𝑔𝑛 ℛ 𝑥 ∈ −1,1 𝑑

𝑥 ∈ ℝ𝑑𝑀
ො𝑥 ∈ ℝ𝑑
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DRIVE - Deterministically RoundIng
randomly rotated VEctors
➢ 𝑅 is a rotation matrix  

➢ ℛ 𝑥 ≜ 𝑅 ⋅ 𝑥 ∈ ℝ𝑑

➢ 𝑆 ∈ ℝ is a scale

➢ 𝑠𝑖𝑔𝑛 ℛ 𝑥 ∈ −1,1 𝑑

𝑥 ∈ ℝ𝑑𝑀
ො𝑥 ∈ ℝ𝑑

1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒: ℛ 𝑥 , 𝑆

2. 𝑆𝑒𝑛𝑑: 𝑀 = 𝑠𝑖𝑔𝑛 ℛ 𝑥 , 𝑆

Compress:

𝑀 = 𝒅(𝟏 + 𝒐 𝟏 )
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DRIVE - Deterministically RoundIng
randomly rotated VEctors
➢ 𝑅 is a rotation matrix  

➢ ℛ 𝑥 ≜ 𝑅 ⋅ 𝑥 ∈ ℝ𝑑

➢ 𝑆 ∈ ℝ is a scale

➢ 𝑠𝑖𝑔𝑛 ℛ 𝑥 ∈ −1,1 𝑑

𝑥 ∈ ℝ𝑑𝑀
ො𝑥 ∈ ℝ𝑑

1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒: ℛ 𝑥 , 𝑆

2. 𝑆𝑒𝑛𝑑: 𝑀 = 𝑠𝑖𝑔𝑛 ℛ 𝑥 , 𝑆
1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒: ෣ℛ 𝑥 = 𝑆 ⋅ 𝑠𝑖𝑔𝑛 ℛ 𝑥

2. 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒: ො𝑥 = ℛ−1 ෣ℛ 𝑥

Compress:Decompress:

𝑀 = 𝒅(𝟏 + 𝒐 𝟏 )
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DRIVE’s  Properties
➢ Given 𝑥 ∈ ℝ𝑑:

• How to chose the rotation matrix 𝑅?

• How to set the scale 𝑆?

➢ Considerations:

• Guarantees

• Complexity
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Intuition Behind DRIVE
Random rotation

Quantization leads to large error for unbalanced coordinates 

✓ All coordinates follow the same distribution (≈ 𝒩 0,
𝑥 2

2

𝑑
𝑓𝑜𝑟 𝑑 ≫ 1)

Random rotation
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Intuition Behind DRIVE
Deterministic rounding + Rescaling

Stochastic Quantization is unbiased but leads to larger errors

✓ Proper rescaling can minimize error and/or make the estimation unbiased 

Deterministic
quantization

Stochastic 
quantization

𝑤. 𝑝. 𝑝1 𝑤. 𝑝. 𝑝2

𝑝1 ⋅ + 𝑝2 ⋅ =
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DRIVE With a Uniform Random Rotation
➢ ℛ𝑈 𝑥 is uniformly distributed on a 𝑑 − 1 dimensional sphere of radius 𝑥 2

➢ Minimize 𝒗𝑵𝑴𝑺𝑬. Set 𝑺 =
𝓡𝑼 𝒙 𝟏

𝒅
, then: 

•
𝔼 𝑥− ො𝑥 2

2

𝑥 2
2 = 1 −

𝜋

2
1 −

1

d
< 0.3634
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling
➢ ℛ𝑈 𝑥 is uniformly distributed on a 𝑑 − 1 dimensional sphere of radius 𝑥 2

➢ Minimize 𝑵𝑴𝑺𝑬. Set 𝑺 =
𝒙 𝟐

𝟐

𝓡𝑼 𝒙 𝟏
, then 𝔼 ො𝑥 = 𝑥 and:

•
𝔼 𝑥− ො𝑥 2

2

𝑥 2
2

∗ 𝜋

2
− 1 ≈ 0.571

•
𝔼 𝑥𝑎𝑣𝑔−ෟ𝑥𝑎𝑣𝑔 2

2

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 2

2
→

0.571

𝑛

(∗) for 𝑑 ≥ 135, 
𝔼 𝑥− ො𝑥 2

2

𝑥 2
2 ≤

𝜋

2
− 1 +

6𝜋3−12𝜋2 ⋅ln 𝑑 +1

𝑑
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥
➢ For ease of exposition:

➢ 𝑑 = 2

➢ 𝑠𝑖𝑔𝑛 ℛ 𝑥 ∈ −1,0,1 𝑑

27



DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥

➢ Random rotation
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥

➢ Random rotation
➢ Quantization 
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥

➢ Random rotation
➢ Quantization 

➢ Inverse rotation
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥

➢ Random rotation
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥

➢ Random rotation
➢ Quantization 
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥

➢ Random rotation
➢ Quantization 

➢ Inverse rotation
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥
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DRIVE With a Uniform Random Rotation 
Is Unbiased With Proper Scaling

𝑥 ∈ ℝ𝑑ො𝑥 ∈ ℝ𝑑

𝑥
ො𝑥

ො𝑥
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DRIVE With a Structured Random Rotation
Challenge: Uniform random rotation may not be sufficiently fast (𝑂 𝑑3 )

Solution: Randomized Hadamard transform

✓ 𝑂 𝑑 ⋅ 𝑙𝑜𝑔 𝑑 time complexity

✓ GPU friendly in-place implementation

✓ ≈ 27 ms for 𝑑 = 33.5 M

* Suresh, et al. "Distributed mean estimation with limited communication." ICML, 2017.
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DRIVE With a Structured Random Rotation
➢ ℛ𝐻 𝑥 depends on 𝑥

➢ Defines a grid on a 𝑑 − 1 dimensional sphere of radius 𝑥 2

➢ Minimize 𝒗𝑵𝑴𝑺𝑬. Set 𝑆 =
ℛ𝐻 𝑥 1

d
, then: 

•
𝔼 𝑥− ො𝑥 2

2

𝑥 2
2 ≤ 0.5 (instead of ≈ 0.3634 for ℛ𝑈 𝑥 ) 
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DRIVE With a Structured Random Rotation
➢ ℛ𝐻 𝑥 depends on 𝑥

➢ Defines a grid on a 𝑑 − 1 dimensional sphere of radius 𝑥 2

➢ Minimize 𝑵𝑴𝑺𝑬. Set 𝑆 =
𝑥 2

2

ℛ𝐻 𝑥 1
, then, if 𝒙 admits finite moments:

• For 𝑑 ≫ 1:   ℛ𝐻 𝑥 ≈ ℛ𝑈 𝑥 (converge to the same moments)

• For 𝑑 ≫ 1:   𝔼 ො𝑥 ≈ 𝑥 →
𝔼 𝑥𝑎𝑣𝑔−ෟ𝑥𝑎𝑣𝑔 2

2

1

𝑛
σ𝑖=1
𝑛 𝑥𝑖 2

2
≈

0.571

𝑛

* Chmiel, et al. “Neural gradients are near-lognormal: improved quantized and sparse training.” ICLR, 2021.
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DRIVE With a Structured Random Rotation

40



DRIVE With a Structured Random Rotation

Overhead? 
PRNG seed!
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More in the Paper
➢ DRIVE+ - further reduces vMNSE (especially for low dimensions)

➢ More evaluation vs. SOTA techniques :

• NMSE and encoding speeds over different GPUs

• Distributed Learning (CNNs)

• Distributed K-means (Lloyd's algorithm)

• Distributed Power-iteration (e.g., PCA) 

➢ Compatibility with EF

➢ Entropy encoding
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Evaluation
Federated learning

ResNet 18
(11 M)

Customized CNN
(1.2 M)

LSTM recurrent models
(820 K)

LSTM recurrent models
(4 M)

* Evaluation inspired by: Reddi, et al. “Adaptive Federated Optimization.” ICLR, 2021.
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Evaluation
Federated learning

] ] ] ]
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Our Results Are Reproducible

➢ DRIVE’s code is available in: 

➢ https://github.com/amitport/DRIVE-One-bit-Distributed-Mean-Estimation

➢ All simulations in the paper

➢ Stand-alone PyTorch implementation 

➢ Stand-alone TensorFlow implementation 
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Future Work
[arXiv] Extend DRIVE to other settings: 

➢ https://arxiv.org/pdf/2108.08842.pdf

[ICALP21'] Push the boundary of shared randomness:

➢ https://drops.dagstuhl.de/opus/volltexte/2021/14094/pdf/LIPIcs-ICALP-2021-25.pdf

Thank You! 
And enjoy your DRIVE!
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