Estimating Multi-cause Treatment Effects via Single-cause Perturbation

Zhaozhi Qian, Alicia Curth, Mihaela van der Schaar

Background: Treatment effect estimation

General Problem: Estimating the conditional average treatment effect (CATE) using observational data

Confounding bias: treatment allocation is not randomized but influenced by confounders.

Background: Treatment effect estimation

General Problem: Estimating the conditional average treatment effect (CATE) using observational data

Confounding bias: treatment allocation is not randomized but influenced by confounders.

Limitation: Single-cause intervention – most existing methods assume intervention on a single variable

One-dimensional variable

Multi-cause CATE estimation

Problem setup: extension of the single-cause setting

- 1. Causes: variables can be intervened on
 - Treatment: configuration of all causes
 - Causal structure between the causes

Influence any cause and the outcome

Importance

General

Many decisions problems involve acting on multiple variables

Healthcare applications

- Treating complex systemic disease
- Care for elder comorbid patients
- Polypharmacy unnecessary medication

Challenge: combinatorial treatments with confounding

Combinatorial treatments

- K binary causes $\Rightarrow 2^{K}$ treatments
- Only observe one factual outcome
- How to overcome confounding bias?
 - Not just data sparsity in regression

ID	Y(a)									
	A ₁ A ₂ A ₃	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1	Y
1		?	2	?	?	?	?	?:	?	2
2		?	?:	?:	1	?	?	?	?	1
3		?	?	?	?	4	?	?	?	4

Existing works

Methods for single-cause estimation

- Often fail to scale with combinatorial treatments
- E.g., multi-head neural network (TARNET, Shalit et al. 2017), propensity score adjustment (Feng et al. 2012)

Methods for multi-cause estimation

- Parametric assumption: linear model (with low-order interaction)
- Latent variable assumption: performing dimensionality reduction
- Deconfounder (Wang & Blei 2019), VSR (Zou et al. 2020)

Proposed solution: single-cause perturbation

Properties and features

- Leverage existing single-cause estimators as building blocks
- Address confounding by explicit data augmentation
- Easy to implement
- No functional form assumption
- Assumption: causal structure between the causes

Solution: single-cause perturbation

SCP is a two-step procedure

- 1. Data augmentation: model and predict the single-cause effect
- 2. Estimate the multi-cause effect on the augmented dataset

ID	Y(a)									
	A ₁ A ₂ A ₃	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1	Y
1		?	2	?	?	?	?	?	?	2
2		?	?	٠.	1	?	٠-	٠-	?	1
3		?	?	?		4	?	?	?	4

Green cells are "imputed" in the first step
As a result, each individual will have K+1 outcomes

Single-cause perturbation: (1) data augmentation

Illustrative causal diagrams:

Intervention on A_k

 A_k 's Non-descendant causes A_{-k}^{\uparrow}

 A_k 's Descendant causes A_{-k}^{\downarrow}

Single-cause perturbation: (1) data augmentation

Illustrative causal diagrams:

Intervention on A_k

 A_k 's Non-descendant causes A_{-k}^{\uparrow}

 A_k 's Descendant causes A_{-k}^{\downarrow}

New confounders $\mathbf{X}_k' := (\mathbf{X}, \mathbf{A}_{-k}^\uparrow)$

New outcomes $\mathbf{Y}'_k := (Y, \mathbf{A}^{\downarrow}_{-k})$

Estimate the counterfactual outcome of flipping A_k

Single-cause perturbation: (1) data augmentation

Illustrative causal diagrams:

Intervention on A_k

 A_k 's Non-descendant causes A_{-k}^{\uparrow}

 A_k 's Descendant causes A_{-k}^{\downarrow}

New confounders $\mathbf{X}_k' := (\mathbf{X}, \mathbf{A}_{-k}^{\uparrow})$

New outcomes $\mathbf{Y}'_k := (Y, \mathbf{A}^{\downarrow}_{-k})$

Estimate the counterfactual outcome of flipping A_k

This is a single-cause problem and can be solved by any existing ITE estimation algorithm

Comparison with traditional data augmentation

Traditional data augmentation

- Removes spurious correlation with non-causal variables
- The intervention effect is known,
 e.g. the rotating an image

SCP's data augmentation

- Remove confounding bias in treatment assignment
- The intervention effect is estimated by single-cause models – source of error

Single-cause perturbation: (2) estimation on augmented data

Covariate adjustment (S-learner):

Use any supervised learning algorithm to learn the conditional expectation

ID	Y(a)									
	A ₁ A ₂ A ₃	0 0 0	0 0 1	0 1 0	0 1 1	1 0 0	1 0 1	1 1 0	1 1 1	Y
1		?	2	?	?	?	?	?	?	2
2		?:	٠.	٠.	1	?	٠-	٠-	٠-	1
3		?	?	?	?	4	?	?	?	4

Green cells are "imputed" in the first step

Experiments

- Synthetic and semi-synthetic
- Turing various knobs to reflect different situations
 - Number of causes
 - Number of confounders
 - Sample size
 - Strengths of confounding
 - nonlinearity
 - Sparsity of interactions
 - High order interactions
- SCP's performance is consistently strong when the assumptions hold

Figure 3. Simulation Results (best viewed in color). Y-axis is in *log scale*. RMSE is plotted with the 95% confidence interval shaded (the lower the better). Algorithms include NN, CFR, DR-CFR, NN-IPW, VSR and SCP. SCP consistently achieves the best performance.

Figure 4. Counterfactual prediction accuracy as the target treatment \mathbf{a}'_i moves farther away from the factual treatment \mathbf{a}_i .

Figure 5. Effect of data augmentation. RMSE as more datasets are added to \mathcal{D}^{Tr} or more models are added to the NN ensemble.

Reference:

Z. Qian, A. Curth, M. van der Schaar, Estimating Multi-cause Treatment Effects via Single-cause Perturbation, Neurips 2021

Code: https://github.com/ZhaozhiQIAN/Single-Cause-Perturbation-NeurIPS-2021

Lab website: https://www.vanderschaar-lab.com/

Personal profile: https://www.linkedin.com/in/qianzhaozhi/

