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Overview

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data

Knowledge of true latent variables would be useful in many tasks:
classification, transfer learning, causal inference etc.

Popular unsupervised approach: learn disentangled representation

Problem: models used usually unidentifiable (e.g. β-VAE)

Thus can’t recover true data generating features

Our paper: general identifiable framework for principled
disentanglement – Structured Nonlinear ICA

2 / 13



Overview

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data

Knowledge of true latent variables would be useful in many tasks:
classification, transfer learning, causal inference etc.

Popular unsupervised approach: learn disentangled representation

Problem: models used usually unidentifiable (e.g. β-VAE)

Thus can’t recover true data generating features

Our paper: general identifiable framework for principled
disentanglement – Structured Nonlinear ICA

2 / 13



Overview

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data

Knowledge of true latent variables would be useful in many tasks:
classification, transfer learning, causal inference etc.

Popular unsupervised approach: learn disentangled representation

Problem: models used usually unidentifiable (e.g. β-VAE)

Thus can’t recover true data generating features

Our paper: general identifiable framework for principled
disentanglement – Structured Nonlinear ICA

2 / 13



Overview

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data

Knowledge of true latent variables would be useful in many tasks:
classification, transfer learning, causal inference etc.

Popular unsupervised approach: learn disentangled representation

Problem: models used usually unidentifiable (e.g. β-VAE)

Thus can’t recover true data generating features

Our paper: general identifiable framework for principled
disentanglement – Structured Nonlinear ICA

2 / 13



Overview

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data

Knowledge of true latent variables would be useful in many tasks:
classification, transfer learning, causal inference etc.

Popular unsupervised approach: learn disentangled representation

Problem: models used usually unidentifiable (e.g. β-VAE)

Thus can’t recover true data generating features

Our paper: general identifiable framework for principled
disentanglement – Structured Nonlinear ICA

2 / 13



Overview

Common assumption in unsupervised representation learning:
low-dimensional latent variables generate observed data

Knowledge of true latent variables would be useful in many tasks:
classification, transfer learning, causal inference etc.

Popular unsupervised approach: learn disentangled representation

Problem: models used usually unidentifiable (e.g. β-VAE)

Thus can’t recover true data generating features

Our paper: general identifiable framework for principled
disentanglement – Structured Nonlinear ICA

2 / 13



Background: identifiability problem
Identifiability

pθ(x) = pθ̂(x) =⇒ θ = θ̂ ∀(θ, θ̂)

Deep generative models: x = f(s)

..are unidentifiable with factorial prior: p(s) =
∏M

i=1 p(si)
(Hyvärinen and Pajunen, 1999; Khemakhem et al., 2020;
Locatello et al., 2019)
Thus basic VAEs, GANs, Nonlinear ICA etc. are unidentifiable:

Identifiability problem

pf(x) = pf̂(x) 6=⇒ f = f̂

Sources (s) Mixture (x) Estimated sources

Credit: Hiroshi Morioka
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Background: solving identifiability in Nonlinear ICA

Deep generative models: x = f(s)

Adding structure can recover identifiability:

I p(s) =
∏M

i=1 p(si) (unidentifiable)
I p(s|u) =

∏M
i=1 p(si | u) (possibly identifiable)

u is observed auxiliary variable capturing data structure:

I Nonstationarity time-series: ut = i, i ∈ {1, ..,K} indexes
non-stationary regions (Hyvärinen and Morioka, 2016)

I Autocorrelated time-series: ut = xt−1 (Hyvärinen and Morioka,
2017)

I ...or some other observed conditioning variable (class label etc.)
Hyvärinen et al. (2019); Khemakhem et al. (2020)

Recently, structure can also be latent (unsupervised):

I ut can be hidden Markov model (Hälvä and Hyvärinen, 2020;
Gassiat et al., 2020b)

Q: what type of latent structures, in general, allow identifiable
disentanglement?
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Structured Nonlinear ICA

General identifiability framework

Denote (xt)t∈T = ((x(1)t , . . . , x(M)
t ))t∈T where T is a discrete

indexing set of arbitrary dimension.

I For discrete time-series: T is a subset of N.
I Crucially, can also be arbitrary indexing variable: e.g. subset of N2

for spatial data

Structured nonlinear ICA (SNICA) assumptions:

I Weak stationarity: distributions of s(i)
t and s(i)

t′ are the same for any
t, t′ ∈ T, ∀i.

I Unconditional independence of components:
p(st1 , . . . , stm) =

∏N
i=1 p(s(i)

t1 , . . . , s
(i)
tm )

I xt = f(st) + εt , where εt is i.i.d noise with arbitrary unknown
distribution; f is injective.
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Structured Nonlinear ICA – Examples
Previous models can be reformulated to fit within our framework

As well as flexible new models:
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Identifiability of the SNICA framework (1/3)

Very general identifiability results for models in SNICA
framework

Theorems in two parts:

1. Identify noise-free distribution of zt = f(st) from noisy data
xt = zt + εt ,

2. Identify demixing (f−1) of the nonlinearly mixed data
zt = f(st)
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Identifiability of the SNICA framework (2/3)

Identify noise-free distribution of zt = f(st) from noisy data
xt = zt + εt ,

Assumptions:

I (A1) Tails of zt "not much" heavier than Gaussian
I (A2) Non-degeneracy assumption
I (A3) No direction of zt has Gaussian component

Theorem
Assume that assumptions (A1), (A2) and (A3) hold for some
(t1, t2) ∈ T2. Then, zt is identified, up to translation.

Noise ε can have arbitrary and unknown distribution!

Very general result – not limited to our model

Extension of Gassiat et al. (2020b,a)

8 / 13
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Identifiability of the SNICA framework (3/3)

Previous theorem gets us to zt = f(st)

Next, identify demixing f−1

Assumptions

I (B1) "Sufficient" dependency between "nearby" datapoints for
each independent component

I (B2)1 Distributions of independent components are
non-quasi-Gaussian (e.g. no GPs)

Theorem
Assume that assumptions (B1) and (B2) hold, then, f−1 can be
recovered up to permutation and coordinate-wise transformations from
the distribution of (f(st1), . . . , f(stm))

1Can be relaxed under other stricter conditions. See Appendix B.
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New nonlinear ICA model for time-series: ∆-SNICA

Each independent component follows Switching Linear
Dynamical System. For all i = 1, ...,N:

y(i)t = B(i)
ut y(i)t−1 + b(i)

ut + ε
(i)
ut , (1)

where ut := u(i)t is a state of a 1st-order hidden Markov chain, and
where the first elements y(i)t = (s(i)t , . . . , y

(i)
t,d)T , is the ind. comp.

xt = f(s(1)t , . . . , s(N)
t ) + εt

where output noise allows dimensionality reduction

Accounts for useful properties: autocorrelation, non-stationarity,
dimension reduction, and measurement noise.

Nonlinear ICA for video, audio, financial, brain signal data etc.?
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Experiments
Estimate ∆-SNICA with variational inference (Structured VAE)

Simulated data (LHS): Measure identifiability – correlation
between estimated and true independent components
MEG data (RHS) – feature extraction and classification of
stimulus categories:

IIA-HMM: independent innovation analysis with hidden markov latent states
IIA-TCL: independent innovation analysis with time-contrastive learning
LGSSM: linear Gaussian state-space model
iVAE*: identifiable VAE with ground-truth HMM state as auxiliary variable 11 / 13
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Conclusions

General theoretical identifiability framework

Principled disentanglement in structured models by Nonlinear
ICA

Identifiable deconvolution even when output noise is arbitrary and
unknown

∆-SNICA allows for rich temporal dynamics

Multiple new models can be developed e.g. spatial/image data

Future theoretical work needed for: heavy tails, non-additive
output noise, noise that’s not independent of the signal.
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