Better Safe Than Sorry: Preventing Delusive Adversaries with Adversarial Training

Lue Tao^{1,2}, Lei Feng³, Jinfeng Yi⁴, Sheng-Jun Huang^{1,2}, Songcan Chen^{1,2*}

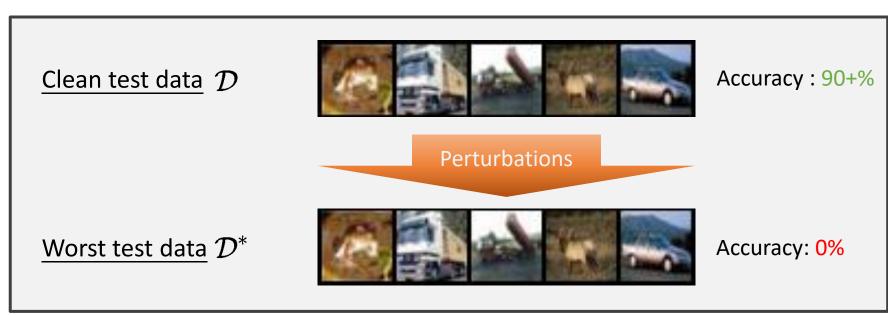
¹Nanjing University of Aeronautics and Astronautics ²MIIT Key Laboratory of Pattern Analysis and Machine Intelligence ³Chongqing University ⁴JD Al Research

*s.chen@nuaa.edu.cn

Adversarial Examples

Adversarial Examples: worst-case data at **test** time

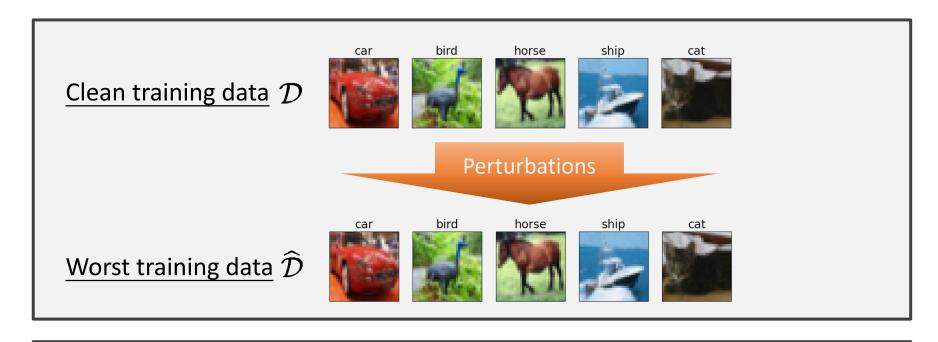
Clean training data ${\cal D}$



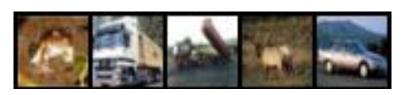
^[1] Biggio, et al. Evasion attacks against machine learning at test time. ECML-KDD, 2013.

^[2] Szegedy, et al. Intriguing properties of neural networks. ICLR, 2014.

What if the training data can be perturbed?



Clean test data $\,\mathcal{D}\,$



Accuracy: 0%

Delusive Attacks

Delusive Attacks: worst-case data at training time



Clean test data $\,\mathcal{D}\,$

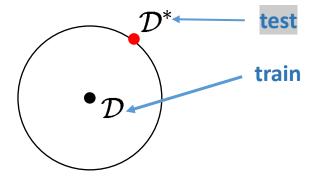
Accuracy: 0%

^[3] Newsome, et al. Paragraph: Thwarting Signature Learning by Training Maliciously. Recent advances in intrusion detection, 2006.

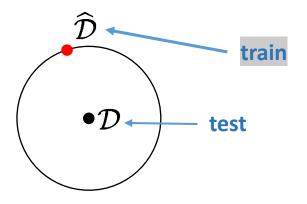
 $^{[4] \} Feng, et \ al. \ Learning \ to \ Confuse: Generating \ Training \ Time \ Adversarial \ Data \ with \ Auto-Encoder. \ NeurIPS, 2019.$

Our Perspective: Twins of Evil

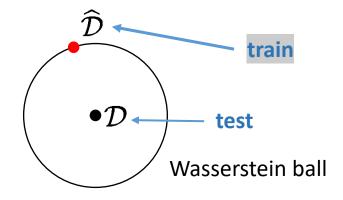
Adversarial Examples: worst-case test data



Delusive Attacks: worst-case training data



[Contribution 1] Formulation of delusive attacks

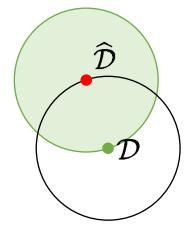


$$\begin{aligned} \max_{\widehat{\mathcal{D}} \in \mathcal{B}_{\mathrm{W}_{\infty}}(\mathcal{D}, \epsilon)} \quad & \mathbb{E}_{(\boldsymbol{x}, y) \sim \mathcal{D}} \left[\ell(f_{\widehat{\mathcal{D}}}(\boldsymbol{x}), y) \right], \\ \mathrm{s.t.} \quad & f_{\widehat{\mathcal{D}}} = \arg\min_{f} \ \mathbb{E}_{(\boldsymbol{x}, y) \sim \widehat{\mathcal{D}}} \left[\ell\left(f\left(\boldsymbol{x}\right), y\right) \right]. \end{aligned}$$

[Contribution 2] The principled defense

Theorem 1. For any data distribution \mathcal{D} and any delusive distribution $\widehat{\mathcal{D}}$ such that $\widehat{\mathcal{D}} \in \mathcal{B}_{W_{\infty}}(\mathcal{D}, \epsilon)$ generated by a delusive adversary, we have

$$\mathcal{R}_{\mathsf{nat}}(f,\mathcal{D}) \leq \max_{\mathcal{D}' \in \mathcal{B}_{\mathrm{W}_{\infty}}(\widehat{\mathcal{D}},\epsilon)} \mathcal{R}_{\mathsf{nat}}(f,\mathcal{D}') = \mathcal{R}_{\mathsf{adv}}(f,\widehat{\mathcal{D}}).$$



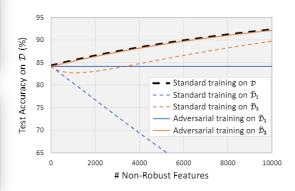
Take-aways

- 1. Minimizing the adversarial risk on the <u>perturbed data</u> \Leftrightarrow Minimizing an upper bound of natural risk on the <u>original data</u>
- 2. Adversarial Training: A principled defense against delusive attacks

[Contribution 3] Internal Mechanisms

Theorem 2. Let $f_{\mathcal{D}}$, $f_{\widehat{\mathcal{D}}_1}$, and $f_{\widehat{\mathcal{D}}_2}$ be the Bayes optimal classifiers for the mixture-Gaussian distributions \mathcal{D} , $\widehat{\mathcal{D}}_1$, and $\widehat{\mathcal{D}}_2$, defined in Eqs. (5), (6), and (7), respectively. For any $\eta > 0$, we have $\mathcal{R}_{\mathsf{nat}}(f_{\mathcal{D}}, \mathcal{D}) < \mathcal{R}_{\mathsf{nat}}(f_{\widehat{\mathcal{D}}_2}, \mathcal{D}) < \mathcal{R}_{\mathsf{nat}}(f_{\widehat{\mathcal{D}}_2}, \mathcal{D}).$

Theorem 3. Let $f_{\widehat{\mathcal{D}}_1, \mathsf{rob}}$ and $f_{\widehat{\mathcal{D}}_2, \mathsf{rob}}$ be the optimal linear ℓ_{∞} robust classifiers for the delusive distributions $\widehat{\mathcal{D}}_1$ and $\widehat{\mathcal{D}}_2$, defined in Eqs. (6) and (7), respectively. For any $0 < \eta < 1/3$, we have $\mathcal{R}_{\mathsf{nat}}(f_{\widehat{\mathcal{D}}_1}, \mathcal{D}) > \mathcal{R}_{\mathsf{nat}}(f_{\widehat{\mathcal{D}}_1, \mathsf{rob}}, \mathcal{D})$ and $\mathcal{R}_{\mathsf{nat}}(f_{\widehat{\mathcal{D}}_2, \mathsf{rob}}, \mathcal{D}) > \mathcal{R}_{\mathsf{nat}}(f_{\widehat{\mathcal{D}}_2, \mathsf{rob}}, \mathcal{D})$.



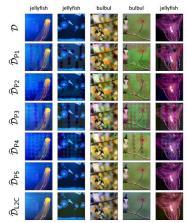
Take-aways

- 1. Adversarial training works under delusive attacks by mitigating model reliance on non-robust features
- 2. Adversarial perturbations are more harmful than hypocritical perturbations

[Contribution 4] Empirical evidences

Practical delusive attacks

- Adversarial perturbations (P1),
- > Hypocritical perturbations (P2),
- Universal adversarial perturbations (P3),
- Universal hypocritical perturbations (P4),
- Universal random perturbations (P5),
- DeepConfuse (L2C) [4]



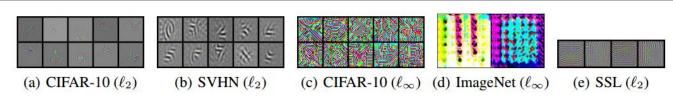


Figure 3: Universal perturbations for the P3 and P4 attacks across different datasets and threat models. Perturbations are rescaled to lie in the [0, 1] range for display. The resulting inputs are nearly indistinguishable from the originals to a human observer (see Appendix B Figures 10, 11, and 12).

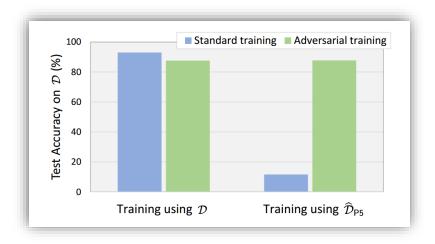
[Contribution 4] Empirical evidences

Six delusive attacks

Adversarial perturbations (P1), Hypocritical perturbations (P2), Universal adversarial perturbations (P3), Universal hypocritical perturbations (P4), Universal random perturbations (P5), and DeepConfuse (L2C)

- Three datasets
 - CIFAR-10, SVHN, and a subset of ImageNet
- > Three tasks

supervised learning, self-supervised learning, and overcoming simplicity bias



Take-aways

- The defense withstands all the attacks on all the datasets/tasks.
- 2. Both theoretical and empirical results vote for adversarial training.

Thanks!