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Background and Motivation

➢Goal: Inter-residue contact/distance prediction

✓ Input: Protein sequence or multiple sequence alignment (MSA)

✓ Output: Contact/distance matrix

➢Application: The essential block of structure-related applications

✓ Protein structure prediction

✓ Protein design

✓ …
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Background and Motivation

Target

MSA
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co-evolve
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➢Key prior: the co-evolution principle

✓ Spatially proximate residues tend to co-evolve

➢Previous works: 

✓ Unsupervised methods

✓ Supervised methods

✓ Pre-training based methods
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Target
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How to extract and leverage co-evolutionary patterns?

➢Key prior: the co-evolution principle

✓ Spatially proximate residues tend to co-evolve

➢Previous works: 

✓ Unsupervised methods

✓ Supervised methods

✓ Pre-training based methods
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Background and Motivation

Inferring co-evolution information from MSA

• Direct coupling analysis (DCA)

➢ RaptorX

➢ trRosetta

➢ AlphaFold
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Yang J, Anishchenko I, Park H, et al. Improved protein structure prediction using predicted interresidue orientations[J]. Proceedings 

of the National Academy of Sciences, 2020.

Wang S, Sun S, Li Z, et al. Accurate de novo prediction of protein contact map by ultra-deep learning model[J]. PLoS computational 

biology, 2017. 

Senior A W, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning[J]. Nature, 2020.
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Single-residue and pairwise statistics are well considered

High-order interactions are ignored



Background and Motivation

Inferring co-evolution information from MSA

• Learning directly from MSA

➢ CopulaNet (SOTA)

➢ RawMSA

Ju F, Zhu J, Shao B, et al. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein 

structure prediction[J]. Nature communications, 2021

Mirabello C, Wallner B. RAWMSA: End-to-end deep learning using raw multiple sequence alignments[J]. PloS one, 2019
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Background and Motivation

Inferring co-evolution information from MSA

• Learning directly from MSA

➢ CopulaNet (SOTA)

➢ RawMSA

Better “end-to-end” learning frameworks 

But some important priors are missed

Ju F, Zhu J, Shao B, et al. CopulaNet: Learning residue co-evolution directly from multiple sequence alignment for protein 

structure prediction[J]. Nature communications, 2021

Mirabello C, Wallner B. RAWMSA: End-to-end deep learning using raw multiple sequence alignments[J]. PloS one, 2019
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Background and Motivation

Motivation

• Modeling individual sequences independently vs. jointly

• Assigning equal vs. unequal weights to different homologs
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Co-evolution Transformer

Leveraging these two insights, we propose the Co-evolution Transformer (CoT) 

For the 𝑘-th sequence in the MSA, the CoA module is defined as:

𝑋𝑘

𝐴
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Co-evolution Transformer

Leverage these two insights, we propose the Co-evolution Attention module …

Overall learning framework
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Co-evolution Transformer

❖Submodule 1: Co-evolution aggregation

𝑄

𝑃
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Co-evolution Transformer

❖Submodule 1: Co-evolution aggregation

𝑄

𝑃
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Co-evolution Transformer

❖Submodule 2: Co-evolution enhancement
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Experimental results

• Quantitative results 
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CoT outperforms CopulaNet, the best of the SOTAs, by 9.0%, 0.8%, 10.6% and 
9.9% for Precision@L scores on four kinds of targets, respectively



Experimental results

• Quantitative results 

A statistical test is conducted, CoT is better than CopulaNet significantly with 
the p-value 0.003.
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Experimental results
• Quantitative results 

Official SOTA
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Experimental results

Why is co-evolution attention better than self-attention? 

• Ablative results 
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• Qualitative results 

Experimental results
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Whether selective pooling strategy works or not?



Concluding remarks

• Jointly modeling multiple homologs

• Selectively aggregating  features from different homologs

• High-order interactions are important 

Future work

• Proteins with low-depth MSAs are still hard

• Pretraining-based models may be a potential solution

Conclusion and Future work
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