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Motivation

» The variational formulation in VAEs poses considerable
practical challenges.

» The over simplistic assumption of a unimodal Gaussian
prior in VAEs lead to an unsatisfying trade-off between — —
the quality of reconstructed samples and the prior
regularization. A _/

» VAEs trained with more expressive priors, like multimodal
Gaussian mixture models (GMMs), improve in terms of
generative performance, but often come with increased
computational complexity and training instability.
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» Recent work in deterministic autoencoders! offers a
promising alternative to VAEs, but requires an additional
ex-post density estimation for high quality sampling.

Figure: Proposed deterministic autoencoder
trained with multi-modal GMM prior
» We propose a generative model that elegantly combines
novel training objectives for deterministic autoencoders
with the extension to multi-modal priors without increasing
training complexity or compromising sampling quality.

L Ghosh, Partha et al. “From Variational to Deterministic Autoencoders.” ICLR2020



Regularized Autoencoders (RAES)

» RAEs! reinterpret deterministic autoencoders
as variational models.

The model is trained with a regularization
loss that maximizes the negative
log-likelihood of the latent samples under a
unimodal Gaussian prior,

+BLIAE 1+ \Lreg

—_—
regularization

LRec
—_—
reconstrcution

LRAE =

v

For high quality sampling, the model requires
an ex-post density estimation with a
multi-modal GMM.

Sampling quality can suffer significantly if the
learned latent space can not be modeled well
by a GMM.

v

L Ghosh, Partha et al. “From Variational to Deterministic Autoencoders.”
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Figure: Aggregated posterior mismatch in VAEs - different
density estimations of the latent space of a VAE learned on
MNIST. The figure shows 2000 test set samples and the
estimators; isotropic Gaussian (left), multivariate Gaussian
(center) and a 10-component GMM (right) (Ghosh,P et al., 2020)

ICLR2020



Proposed Latent Regularization

» We propose to shape the latent space during training to enable high quality sampling without employing
additional density estimation.

» Our proposed regularization scheme can be extended readily from unimodal priors from the standard VAE
formulation to expressive multimodal priors.

» Our training objective is inspired by the non-parametric statistical Kolmogorov-Smirnov (KS) test used to
determine the equality of one-dimensional probability distributions.

> The KS test compares the cumulative distribution function (CDF) of the reference distribution with
empirical CDF of the samples.

» Extension of KS distance to higher dimensions is challenging since it requires matching joint CDFs.

> To overcome this, we consider marginal CDFs and correlations in the target prior distribution separately.



Uni-modal Latent Regularization

>

v

In the unimodal case we consider the
standard VAE prior, i.e. a multivariate
Gaussian.

Given d-dimensional latent samples _
Z4,...,2yN, the empirical marginal CDFs F is
matched with the 1D CDFs of the marginal
distributions of the uni-modal Gaussian prior
o,

13 - ,
Lxs(21,.02n) = 5 SMSE(FV (@), 0(2)).
j=1
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Figure: Uni-modal latent regularization in one and two
dimensions for varying numbers of samples (x-axis) from
different distributions. In two dimensions (right), the KS

distance alone can not differentiate the target prior from other
probability distributions.



Uni-modal Latent Regularization

>
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In the unimodal case we consider the
standard VAE prior, i.e. a multivariate
Gaussian.

Given d-dimensional latent samples _
Z4,...,2yN, the empirical marginal CDFs F is
matched with the 1D CDFs of the marginal
distributions of the uni-modal Gaussian prior
o,
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Lxs(21,.02n) = 5 SMSE(FV (@), 0(2)).
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The empirical covariance £ is explicitly
matched with the target covariance I,
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Figure: Uni-modal latent regularization in one and two
dimensions for varying numbers of samples (x-axis) from
different distributions. In two dimensions (right), the KS

distance alone can not differentiate the target prior from other
probability distributions.



Multi-modal Latent Regularization

» Encouraging a multi-modal latent representation enables effective modelling of complex input spaces.

» Our regularization scheme can be readily applied to expressive multi-modal prior distributions (GMM) since
linear combination of Gaussians allows for closed form computations of CDFs and covariances.

v

The total loss of the proposed model is the weighted combination of a simple reconstruction loss and the
latent regularization,

L(X) = ArecLrec(X) + AksLxs(2) + AevLev (2),

mean squared error  multi-modal latent regularization

where X’ are reconstructions of samples x and z their latent representations.

> We propose a concise way to set Ags and Acy and a simple heuristic to estimate Aggc.



Image Generation
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Image Generation

» We evaluate the FID of the generated samples from prior distribution (Samp.),

Dataset FASHION MNIST SVHN CELEBA
Samp. Samp. Samp.

VAE 50.50 61.01 68.01

WAE 39.66 58.08 58.91

CV-VAE 57.57 51.01 57.61

2sVAE 46.47 45.84 53.12

RAE 47.26 42.35 52.33

Ours 33.70 37.42 49.79

Table: Quantitative evaluation



Image Generation

> We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fitting
a GMM on the learned model (GMM.),

Dataset FASHION MNIST SVHN CELEBA
Samp. GMM Samp. GMM Samp. GMM
VAE 50.50 36.22 61.01 58.23 68.01 61.63
WAE 39.66 28.01 58.08 34.87 58.91 49.17
CV-VAE 57.57 38.28 51.01 54.19 57.61 52.72
2sVAE 46.47 - 45.84 - 53.12 -
RAE 47.26 29.59 42.35 35.12 52.33 48.23
Ours 33.70 26.62 37.42 36.46 49.79 44.79

Table: Quantitative evaluation



Image Generation

» We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fitting
a GMM on the learned model (GMM.), the reconstructed samples (Rec.)

Dataset FASHION MNIST SVHN CELEBA
Samp. GMM Rec Samp. GMM Rec. Samp. GMM Rec.

VAE 50.50 36.22 33.33 61.01 58.23 59.13 68.01 61.63 52.55
WAE 39.66 28.01 24.84 58.08 34.87 29.62 58.91 49.17 41.14
CV-VAE 57.57 38.28 35.10 51.01 54.19 48.53 57.61 52.72 45.32
2sVAE 46.47 - 31.93 45.84 - 44.27 53.12 - 44.78
RAE 47.26 29.59 24.54 42.35 35.12 31.04 52.33 48.23 41.61
Ours 33.70 26.62 19.56 37.42 36.46 31.27 49.79 44.79 39.48

Table: Quantitative evaluation



Image Generation

» We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fitting
a GMM on the learned model (GMM.), the reconstructed samples (Rec.) and the interpolated samples

(Inter.).
Dataset FASHION MNIST SVHN CELEBA

Samp. GMM Rec. Inter. Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.
VAE 50.50 36.22 33.833 44.12 61.01 58.23 59.13 50.29 68.01 61.63 52.55 58.39
WAE 39.66 28.01 24.84 35.01 58.08 34.87 29.62 27.16 58.91 49.17 41.14 47.08

CV-VAE 57.57 38.28 35.10 47.73 51.01 54.19 48.53 47.65 57.61 52.72 45.32 50.87

2sVAE 46.47 - 31.93 41.06 45.84 - 44.27 40.23 53.12 - 44.78 47.64
RAE 47.26 29.59 24.54 34.77 42.35 35.12 31.04 27.30 52.33 48.23 41.61 46.58
Ours 33.70 26.62 19.56 29.17 37.42 36.46 31.27 24.87 49.79 44.79 39.48 47.13

Table: Quantitative evaluation



Image Generation

» We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fitting
a GMM on the learned model (GMM.), the reconstructed samples (Rec.) and the interpolated samples
(Inter.).

> Our model performs comparably or even better without employing the ex-post GMM fit.

Dataset FASHION MNIST SVHN CELEBA

Samp. GMM Rec. Inter. Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.
VAE 50.50 36.22 33.833 44.12 61.01 58.23 59.13 50.29 68.01 61.63 52.55 58.39
WAE 39.66 28.01 24.84 35.01 58.08 34.87 29.62 27.16 58.91 49.17 41.14 47.08

CV-VAE 57.57 38.28 35.10 47.73 51.01 54.19 48.53 47.65 57.61 52.72 45.32 50.87

2sVAE 46.47 - 31.93 41.06 45.84 - 44.27 40.23 53.12 - 44.78 47.64
RAE 47.26 29.59 24.54 34.77 42.35 35.12 31.04 27.30 52.33 48.23 41.61 46.58
Ours 33.70 26.62 19.56 29.17 37.42 36.46 31.27 24.87 49.79 44.79 39.48 47.13

Table: Quantitative evaluation



Unsupervised Image Clustering

» The goal is to naturally cluster the data points in the learned latent space with the multi-modal GMM prior.
> The model is trained with MNIST and FASHIONMNIST images with a 10 component GMM prior.

» The different components of the prior are considered as different classes/clusters to which the data points
are mapped by the encoder.
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Table: Quantitative evaluation - Unsupervised
classification accuracy

MNIST FASHIOMNIST

Figure: Qualitative evaluation (Each row in the figure shows
randomly generated images from each component of the GMM
prior)



Modelling discrete data structures

» The goal is to model complex discrete data structures such as arithmetic expressions and molecules.
» We extend the GVAE! architecture and experimental settings to include our novel loss.
» Bayesian Optimization is performed in the learned latent space to generate samples with desired properties.

> In Chemical design experiments, we generate new drug like molecules by optimizing the water octanol
partition coefficient score.

Method Score
Ist(t)  2nd(1)  3rd(1) Number SMILE Score(t)
GVAE 3.13 3.10 2.37 1 c(ccoyceecececcce 4.15
CVAE 2.75 0.82 0.63 2 Cccececececcecce 3.84
GCVVAE 3.22 2.83 2.63 3 CCCCCclccec(cl) 3.12
GRAE 3.74 3.52 3.14
Oours 415 3.84 312 Table: Qualitative analysis - The generated

molecules corresponding to the observed best
three scores

Table: Quantitative analysis - Top 3 best scores
observed for generated molecules across methods

LKusner, Matt J. et al. “Grammar Variational Autoencoder.’ ICML (2017)



Modelling discrete data structures

» The goal is to model complex discrete data structures such as arithmetic expressions and molecules.

» We extend the GVAE! architecture and experimental settings to include our novel loss.

» Bayesian Optimization is performed in the learned latent space to generate samples with desired properties.
> In Chemical design experiments, we generate new drug like molecules by optimizing the water octanol

partition coefficient score.

» A well-structured latent space should yield valid sampling following the defined grammar rules.

Method Validity
Frac. valid (1) Avg. score (1)
GVAE 0.28 + 0.04 -7.89 + 1.90
CVAE 0.16 + 0.04 -25.64 + 6.35
GCVVAE 0.76 + 0.06 -6.40 + 0.80
GRAE 0.72 + 0.09 -5.62 + 0.71
Ours 0.72 + 0.03 -5.08 + 1.30

Table: Quantitative analysis - fraction of valid samples and corresponding average score of the generated molecules across
methods

LKusner, Matt J. et al. “Grammar Variational Autoencoder.’ ICML (2017)



Conclusion

» We propose an efficient end-to-end trainable deterministic autoencoder that allows high quality sampling
from latent space.

> We introduce a novel deterministic regularization scheme derived from a strong metric on probability
distributions to accommodate for expressive multi-modal priors.

» The proposed model achieves good sampling quality even without a ex-post GMM fit.

» Our experimental analysis shows the potential of the model to effectively structure the latent space of
both continuous (images) and complex discrete domains (chemical molecules).

> The use of our multi-modal prior distributions significantly improved the optimization performance in the
learned latent space.

> We also observed good clustering performance in the learned latent space.
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