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Motivation
▸ The variational formulation in VAEs poses considerablepractical challenges.
▸ The over simplistic assumption of a unimodal Gaussianprior in VAEs lead to an unsatisfying trade-off betweenthe quality of reconstructed samples and the priorregularization.
▸ VAEs trained with more expressive priors, like multimodalGaussian mixture models (GMMs), improve in terms ofgenerative performance, but often come with increasedcomputational complexity and training instability.
▸ Recent work in deterministic autoencoders1 offers apromising alternative to VAEs, but requires an additionalex-post density estimation for high quality sampling.
▸ We propose a generative model that elegantly combines

novel training objectives for deterministic autoencoders
with the extension to multi-modal priors without increasing
training complexity or compromising sampling quality.

Figure: Proposed deterministic autoencodertrained with multi-modal GMM prior

1Ghosh, Partha et al. “From Variational to Deterministic Autoencoders.” ICLR2020



Regularized Autoencoders (RAEs)
▸ RAEs1 reinterpret deterministic autoencodersas variational models.
▸ The model is trained with a regularizationloss that maximizes the negativelog-likelihood of the latent samples under aunimodal Gaussian prior,

LRAE = LREC
²reconstrcution

+βLRAE
Z + λLREG

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶regularization
▸ For high quality sampling, the model requiresan ex-post density estimation with amulti-modal GMM.
▸ Sampling quality can suffer significantly if thelearned latent space can not be modeled wellby a GMM.

Figure: Aggregated posterior mismatch in VAEs - differentdensity estimations of the latent space of a VAE learned onMNIST. The figure shows 2000 test set samples and theestimators; isotropic Gaussian (left), multivariate Gaussian(center) and a 10-component GMM (right) (Ghosh,P et al., 2020)

1Ghosh, Partha et al. “From Variational to Deterministic Autoencoders.” ICLR2020



Proposed Latent Regularization
▸ We propose to shape the latent space during training to enable high quality sampling without employingadditional density estimation.
▸ Our proposed regularization scheme can be extended readily from unimodal priors from the standard VAEformulation to expressive multimodal priors.
▸ Our training objective is inspired by the non-parametric statistical Kolmogorov-Smirnov (KS) test used todetermine the equality of one-dimensional probability distributions.
▸ The KS test compares the cumulative distribution function (CDF) of the reference distribution withempirical CDF of the samples.
▸ Extension of KS distance to higher dimensions is challenging since it requires matching joint CDFs.
▸ To overcome this, we consider marginal CDFs and correlations in the target prior distribution separately.



Uni-modal Latent Regularization
▸ In the unimodal case we consider thestandard VAE prior, i.e. a multivariateGaussian.
▸ Given d-dimensional latent samples

z1, . . . , zN, the empirical marginal CDFs F̄ ismatched with the 1D CDFs of the marginaldistributions of the uni-modal Gaussian prior
Φ,
LKS(z1, . . . , zN) =

1
d

d
∑
j=1

MSE (F̄(N)j (zj),Φ(z̄j)) .

▸ The empirical covariance Σ̄ is explicitlymatched with the target covariance Σ,
LCV(z1, . . . , zN) =

1
d2

d
∑
l,j=1

([Σ̄]l,j − [Σ]l,j)
2
.

Figure: Uni-modal latent regularization in one and twodimensions for varying numbers of samples (x-axis) fromdifferent distributions. In two dimensions (right), the KSdistance alone can not differentiate the target prior from otherprobability distributions.
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Multi-modal Latent Regularization
▸ Encouraging a multi-modal latent representation enables effective modelling of complex input spaces.
▸ Our regularization scheme can be readily applied to expressive multi-modal prior distributions (GMM) sincelinear combination of Gaussians allows for closed form computations of CDFs and covariances.
▸ The total loss of the proposed model is the weighted combination of a simple reconstruction loss and thelatent regularization,

L(x) = λRECLREC(x′)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶mean squared error

+λKSLKS(z) + λCVLCV(z)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶multi-modal latent regularization

,

where x′ are reconstructions of samples x and z their latent representations.
▸ We propose a concise way to set λKS and λCV and a simple heuristic to estimate λREC.



Image Generation



Image Generation
▸ We evaluate the FID of the generated samples from prior distribution (Samp.),

generated samples by fittinga GMM on the learned model (GMM.), the reconstructed samples (Rec.) and the interpolated samples(Inter.).
▸ Our model performs comparably or even better without employing the ex-post GMM fit.

Dataset FASHION MNIST SVHN CELEBA
Samp.

GMM Rec. Inter.

Samp.

GMM Rec. Inter.

Samp.

GMM Rec. Inter.

VAE 50.50

36.22 33.33 44.12

61.01

58.23 59.13 50.29

68.01

61.63 52.55 58.39

WAE 39.66

28.01 24.84 35.01

58.08

34.87 29.62 27.16

58.91

49.17 41.14 47.08

CV-VAE 57.57

38.28 35.10 47.73

51.01

54.19 48.53 47.65

57.61

52.72 45.32 50.87

2sVAE 46.47

− 31.93 41.06

45.84

− 44.27 40.23

53.12

− 44.78 47.64

RAE 47.26

29.59 24.54 34.77

42.35

35.12 31.04 27.30

52.33

48.23 41.61 46.58

Ours 33.70

26.62 19.56 29.17

37.42

36.46 31.27 24.87

49.79

44.79 39.48 47.13

Table: Quantitative evaluation



Image Generation
▸ We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fittinga GMM on the learned model (GMM.),

the reconstructed samples (Rec.) and the interpolated samples(Inter.).
▸ Our model performs comparably or even better without employing the ex-post GMM fit.

Dataset FASHION MNIST SVHN CELEBA
Samp. GMM

Rec. Inter.

Samp. GMM

Rec. Inter.

Samp. GMM

Rec. Inter.

VAE 50.50 36.22

33.33 44.12

61.01 58.23

59.13 50.29

68.01 61.63

52.55 58.39

WAE 39.66 28.01

24.84 35.01

58.08 34.87

29.62 27.16

58.91 49.17

41.14 47.08

CV-VAE 57.57 38.28

35.10 47.73

51.01 54.19

48.53 47.65

57.61 52.72

45.32 50.87

2sVAE 46.47 −

31.93 41.06

45.84 −

44.27 40.23

53.12 −

44.78 47.64

RAE 47.26 29.59

24.54 34.77

42.35 35.12

31.04 27.30

52.33 48.23

41.61 46.58

Ours 33.70 26.62

19.56 29.17

37.42 36.46

31.27 24.87

49.79 44.79

39.48 47.13

Table: Quantitative evaluation



Image Generation
▸ We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fittinga GMM on the learned model (GMM.), the reconstructed samples (Rec.)

and the interpolated samples(Inter.).
▸ Our model performs comparably or even better without employing the ex-post GMM fit.

Dataset FASHION MNIST SVHN CELEBA
Samp. GMM Rec.

Inter.

Samp. GMM Rec.

Inter.

Samp. GMM Rec.

Inter.

VAE 50.50 36.22 33.33

44.12

61.01 58.23 59.13

50.29

68.01 61.63 52.55

58.39

WAE 39.66 28.01 24.84

35.01

58.08 34.87 29.62

27.16

58.91 49.17 41.14

47.08

CV-VAE 57.57 38.28 35.10

47.73

51.01 54.19 48.53

47.65

57.61 52.72 45.32

50.87

2sVAE 46.47 − 31.93

41.06

45.84 − 44.27

40.23

53.12 − 44.78

47.64

RAE 47.26 29.59 24.54

34.77

42.35 35.12 31.04

27.30

52.33 48.23 41.61

46.58

Ours 33.70 26.62 19.56

29.17

37.42 36.46 31.27

24.87

49.79 44.79 39.48

47.13

Table: Quantitative evaluation



Image Generation
▸ We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fittinga GMM on the learned model (GMM.), the reconstructed samples (Rec.) and the interpolated samples(Inter.).

▸ Our model performs comparably or even better without employing the ex-post GMM fit.

Dataset FASHION MNIST SVHN CELEBA
Samp. GMM Rec. Inter. Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.

VAE 50.50 36.22 33.33 44.12 61.01 58.23 59.13 50.29 68.01 61.63 52.55 58.39WAE 39.66 28.01 24.84 35.01 58.08 34.87 29.62 27.16 58.91 49.17 41.14 47.08CV-VAE 57.57 38.28 35.10 47.73 51.01 54.19 48.53 47.65 57.61 52.72 45.32 50.872sVAE 46.47 − 31.93 41.06 45.84 − 44.27 40.23 53.12 − 44.78 47.64RAE 47.26 29.59 24.54 34.77 42.35 35.12 31.04 27.30 52.33 48.23 41.61 46.58
Ours 33.70 26.62 19.56 29.17 37.42 36.46 31.27 24.87 49.79 44.79 39.48 47.13

Table: Quantitative evaluation



Image Generation
▸ We evaluate the FID of the generated samples from prior distribution (Samp.), generated samples by fittinga GMM on the learned model (GMM.), the reconstructed samples (Rec.) and the interpolated samples(Inter.).
▸ Our model performs comparably or even better without employing the ex-post GMM fit.

Dataset FASHION MNIST SVHN CELEBA
Samp. GMM Rec. Inter. Samp. GMM Rec. Inter. Samp. GMM Rec. Inter.

VAE 50.50 36.22 33.33 44.12 61.01 58.23 59.13 50.29 68.01 61.63 52.55 58.39WAE 39.66 28.01 24.84 35.01 58.08 34.87 29.62 27.16 58.91 49.17 41.14 47.08CV-VAE 57.57 38.28 35.10 47.73 51.01 54.19 48.53 47.65 57.61 52.72 45.32 50.872sVAE 46.47 − 31.93 41.06 45.84 − 44.27 40.23 53.12 − 44.78 47.64RAE 47.26 29.59 24.54 34.77 42.35 35.12 31.04 27.30 52.33 48.23 41.61 46.58
Ours 33.70 26.62 19.56 29.17 37.42 36.46 31.27 24.87 49.79 44.79 39.48 47.13

Table: Quantitative evaluation



Unsupervised Image Clustering
▸ The goal is to naturally cluster the data points in the learned latent space with the multi-modal GMM prior.
▸ The model is trained with MNIST and FASHIONMNIST images with a 10 component GMM prior.
▸ The different components of the prior are considered as different classes/clusters to which the data pointsare mapped by the encoder.

Figure: Qualitative evaluation (Each row in the figure showsrandomly generated images from each component of the GMMprior)

Method Acc(↑)
MNIST FASHION-MNIST

JointVAE 78.33 51.51CascadeVAE 84.19 57.72Ours 85.53 56.24

Table: Quantitative evaluation - Unsupervisedclassification accuracy



Modelling discrete data structures
▸ The goal is to model complex discrete data structures such as arithmetic expressions and molecules.
▸ We extend the GVAE1 architecture and experimental settings to include our novel loss.
▸ Bayesian Optimization is performed in the learned latent space to generate samples with desired properties.
▸ In Chemical design experiments, we generate new drug like molecules by optimizing the water octanol

partition coefficient score.

▸ A well-structured latent space should yield valid sampling following the defined grammar rules.

Method Score
1st(↑) 2nd(↑) 3rd(↑)

GVAE 3.13 3.10 2.37CVAE 2.75 0.82 0.63GCVVAE 3.22 2.83 2.63GRAE 3.74 3.52 3.14
Ours 4.15 3.84 3.12

Table: Quantitative analysis - Top 3 best scoresobserved for generated molecules across methods

Number SMILE Score(↑)
1 C(CCC)CCCCCCCC 4.152 CCCCCCCCCCC 3.843 CCCCCc1cccc(c1) 3.12

Table: Qualitative analysis - The generatedmolecules corresponding to the observed bestthree scores

1Kusner, Matt J. et al. “Grammar Variational Autoencoder.” ICML (2017)



Modelling discrete data structures
▸ The goal is to model complex discrete data structures such as arithmetic expressions and molecules.
▸ We extend the GVAE1 architecture and experimental settings to include our novel loss.
▸ Bayesian Optimization is performed in the learned latent space to generate samples with desired properties.
▸ In Chemical design experiments, we generate new drug like molecules by optimizing the water octanol

partition coefficient score.
▸ A well-structured latent space should yield valid sampling following the defined grammar rules.

Method Validity
Frac. valid (↑) Avg. score (↑)

GVAE 0.28 ± 0.04 -7.89 ± 1.90CVAE 0.16 ± 0.04 -25.64 ± 6.35GCVVAE 0.76 ± 0.06 -6.40 ± 0.80GRAE 0.72 ± 0.09 -5.62 ± 0.71
Ours 0.72 ± 0.03 -5.08 ± 1.30

Table: Quantitative analysis - fraction of valid samples and corresponding average score of the generated molecules acrossmethods

1Kusner, Matt J. et al. “Grammar Variational Autoencoder.” ICML (2017)



Conclusion
▸ We propose an efficient end-to-end trainable deterministic autoencoder that allows high quality samplingfrom latent space.
▸ We introduce a novel deterministic regularization scheme derived from a strong metric on probabilitydistributions to accommodate for expressive multi-modal priors.
▸ The proposed model achieves good sampling quality even without a ex-post GMM fit.
▸ Our experimental analysis shows the potential of the model to effectively structure the latent space ofboth continuous (images) and complex discrete domains (chemical molecules).
▸ The use of our multi-modal prior distributions significantly improved the optimization performance in thelearned latent space.
▸ We also observed good clustering performance in the learned latent space.
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