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Summary

Setting: a target distribution

π(x) = L(x)ρ(x)/Z

with unknown normalizing constant Z.
- Bayesian setting: ρ is the prior distribution, L is the likelihood.
- Generative Adversarial Networks: ρ is the generator and L(x) is derived

from discriminator.
- Variational autoencoders: here ρ(x)L(x) = pθ(x, y), Z = pθ(y) and we

need to compute a lower bound of log(Z).

Objectives:
- Estimate the normalizing constant Z =

∫
L(x)ρ(x)dx

- Sample from π.
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Basic idea

An Importance Sampling (IS) estimator of Z =
∫
L(x)ρ(dx) is

Ẑ = N−1
N∑
i=1

L(Xi) , (Xi)1≤i≤N
iid∼ ρ .

Ẑ is unbiased:
E
Xiiid∼ρ

[Ẑ
$
] = Z .

Idea: Build estimator refining proposal distribution ρ using transport map
T.

T does not necessarily leaves π or ρ invariant (hence the name
non-equilibrium).



Construction

Define ρk the pushforward of ρ by Tk:

ρk(x) = ρ(T−k(x))JT−k (x)

For any probability distribution ($k)k∈Z, define:

ρT(x) =
∑
k∈Z

$kρk(x) .

In practice, we choose $k ∝ 1[0,K](k) for some K ∈ N∗.
Key identity: For any nonnegative function f ,∫

f(x)ρ(x)dx =

∫
f(x)

ρ(x)

ρT(x)
ρT(x)dx =

∫ ∑
k∈Z

f(Tk(x))wk(x)

 ρ(x)dx

where wk(x) are the ’importance’ weights

wk(x) = $k
ρ(Tk(x))

ρT(T
k(x))

=
$kρ−k(x)∑
j∈Z$jρj−k(x)

.



NEO estimator

For f(x) = L(x), we obtain the NEO estimator of the normalizing
constant Z:

Ẑ
$

X1:N =
1

N

N∑
i=1

∑
k∈Z

wk(X
i)L(Tk(Xi)) , Xi iid∼ ρ

NEO estimators are unbiased: E
X1:N iid∼ρ

[Ẑ
$

X1:N ] = Z .

Algorithm:

1 Sample X1:N iid∼ ρ for i ∈ [N ].
2 For i ∈ [N ], compute the path (Tj(Xi))j∈Z and weights (wj(X

i))j∈Z.

3 INEO
$,N (f) = N−1

∑N
i=1

∑
k∈Z wk(X

i)f(Tk(Xi)).



Self Normalized Importance Sampling

Build the self normalized importance sampling estimator of
π(g) = Eπ[g(X)] =

∫
π(x)g(x)dx:

JNEO
$,N (f) = N−1

N∑
i=1

Ẑ
$

Xi

Ẑ
$

X1:N

∑
k∈Z

L(Tk(Xi))wk(X
i)

Ẑ
$

Xi

f(Tk(Xi)) .

Non asymptotic properties of the estimator: Define

E$T = EX∼ρ
[(∑

k∈Z wk(X)L(Tk(X))/Z
)2]

.

Assume that E$T <∞. Then, for any function g satisfying
supx∈Rd |g(x)| ≤ 1 on Rd, and N ∈ N

E
X1:N iid∼ρ

[
|JNEO
$,N (g)− π(g)|2

]
≤ 4 ·N−1E$T ,∣∣∣E

X1:N iid∼ρ

[
JNEO
$,N (g)− π(g)

]∣∣∣ ≤ 2 ·N−1E$T .



Choice of T

Lemma
For any nonnegative sequence ($k)k∈Z, we have

E$T ≤ Dχ2(π‖ρT) + 1 .

Desired properties
1 T should drive samples from ρ to the sets where L is large.
2 The Jacobian of T should be easy to compute

Many normalizing flows have been introduced recently in the literature.
But learning the flows introduces an additional layer of complexity

Idea: Use a conformal Hamiltonian transform (linked with the momentum
estimator).



Conformal Hamiltonian systems

Define
Potential energy: U(q) = log[L(q)ρ(q)], where q is the position
Kinetic energy: K(p) = pTM−1p/2, where p is the momentum, M is the
mass matrix
Hamiltonian (total energy) of the system H(q, p) = U(q) +K(p).

Transformation T(q0, p0) = (q1, p1) where

p1 = e−hγp0 − h∇U(q0) , q1 = q0 + hp1 .

Euler discretization of conformal Hamiltonian dynamics

Figure: Vector field of a conformal Hamiltonian system.



Conformal Hamiltonian vector field

Compare E$T (K) for $k ∝ 1[0,K](k) to
EIS(K)− 1 = (K + 1)−1EX∼ρ[L(X)2] the IS equivalent.
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Figure: Top: E
1[K]

Th
(K) vs EIS(K) (red) in log10-scale as a function of optimization

step K. Bottom, left to right: Corresponding orbits for γ = 0.1, 1, 2.
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Sampling Importance Resampling (SIR)

Algorithm

1 Draw X1:N iid∼ ρ,
2 Draw I∗ ∼ Cat({L̃(Xi)}Ni=1) and

set X∗ = XI∗ .

Main result When N →∞ the
distribution of X∗ converges weakly
to π.

Caveats: the number N of proposals
typically grows exponentially with
the dimension d to maintain a given
accuracy.

Figure: SIR scheme



NEO-MCMC sampler

At step n ∈ N∗, given the conditioning orbit point Yn−1.
Step 1: Update the conditioning point

1 Set X1
n = Yn−1 and for any i ∈ {2, . . . , N}, sample Xi

n
iid∼ ρ.

2 Sample the orbit index In with probability proportional to (Ẑ
$

Xi
n
)i∈[N ].

3 Set Yn = XIn
n .

Step 2: Output a sample

1 Sample index Kn with probability proportional to
{wk(Yn)L(Tk(Yn))/Ẑ

$

Yn
}k∈Z

2 Output Un = TKn(Yn).
Geometric ergodicity and invariance results can be achieved on this
sampler !
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Estimation of normalizing constant

Consider now the 25 Gaussian distribution
MG25 mixture of 25 d-dimensional Gaussian
distributions in dimension d = 10, 20, 45.

Parameters

- Diagonal covariances with diagonal
elements equal to
(0.01, 0.01, 0.1, . . . , 0.1).

- Means given by (i, j, 0, . . . , 0) with
i, j ∈ {−2, . . . , 2}
Consider also the complex Funnel
distribution (Fun)
π(x) = N(x1; 0, a2)

∏d
i=1 N(xi; 0, e

2bx1 )
with d ∈ {10, 20, 45}, a = 1, and b = 0.5.

Proposal is ρ = N(0, σ2
ρ Idd) with σ2

ρ = 5.

Figure: First two dimensions of
the 25 Gaussian dataset.



Estimation of Normalizing constants
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Figure: Boxplots of 500 independent estimations of the normalizing constant in
dimension d = {10, 20, 45} (from left to right) for MG25 (top) and Fun (bottom). The
true value is given by the red line. The figure displays the median (solid lines), the
interquartile range, and the mean (dashed lines) over the 500 runs.



MCMC sampler results

First focus on 25 Gaussians dataset, with d = 40.

We compare NEO with Correlated ISIR and the No U-Turn Sampler
(NUTS).

All algorithms are run during the same computational time.

Figure: Histograms of the MCMC samples. From left to right, ISIR, NUTS and NEO.



Gibbs inpainting on images

Consider a more striking examples to illustrate mixing time.

Focus on some trained VAE on CelebA dataset (no optimization objective
here)

Given an image y, denote by [yt, yb] the top and the bottom half pixels.

Two-stage Gibbs sampler
1 Sample pθ∗ (z|yt, yb)
2 Sample pθ∗ (y

b|z, yt) = pθ∗ (y
b|x).

Perform MCMC-within-Gibbs for stage 1 using i-SIR, NEO-MCMC and
HMC with same computational complexity.



Gibbs inpainting

Figure: Gibbs inpainting for CelebA dataset. From top to bottom: i-SIR, HMC and
NEO-MCMC: From left to right, original image, blurred image to reconstruct, and
output every 5 iterations of the Markov chain. Last line: a forward orbit used in
NEO-MCMC.

NEO-MCMC mixes faster than i-SIR and HMC ! Last line illustrates the effect
of the trajectory.
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Conclusion

Powerful estimator building on optimization paths

Extends easily to an efficient MCMC sampler and other types of deep
generative models

Difficulty however to find good parameters automatically

We could consider other transformations (the framework easily extends to
non homogeneous mappings, such as normalizing flows !)

Natural connection to Nested Sampling in the approach. Could apply to
microcanonical sampling.

Thank you for your attention !
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