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Collaborative Learning between RL and Planning (“Learn to Plan”)

—— into a series of sub-tasks
l yields dense rewards for RL. ! Every step planning is costly and

Random tasks are not
sufficiently informative
and diverse to learn.

requires searching in large
configuration space.
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Mutual Training of Path-Planning Policy and RL Agent

d A curriculum of sub-
tasks, dense rewards
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minimizing RLs time- |, if completing a sub-task
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Time-cost of planned
sequence of sub-tasks

RL’s time-cost on the planned sub-

tasks can be the training data to train + Sub-tasks produced by the path-planner
the policy of path planner; provide dense rewards and detailed
Hence, neither prior knowledge nor guidance to RL along long-horizon tasks;
external feedback is needed to train  Hence, the path-planner improves RL'’s
the path planner. sample efficiency.
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CO-PILOT: EASY-TO-HARD sub-task curriculum for both RL and Planning
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Path-Planner recursively generates Coarse-to-Fine min-cost Path
Sub-tasks Tree

Apply planning policy 7, to interpolate a sub-task between a
consecutive sub-goal pair (g, g’) from the upper layer: (Recursive) =0

O, Pr(go:rl90 = 50,97 = 9) - it (go::;: ‘go,gaz: ) Pr (.gg;T 922:,9) Tp (g;;. 80,9)

Update planning policy m,, to minimize the cost of sub-tasks up to layer—k

@ Vir, = Egp.ram, [C(QO:T) - Vlog ET(QO:T|SO,9)]
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Main Ideas of CO-PILOT

Top-down construction
eases and accelerates the
training of path-planner.
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| Sub-tasks Tree

Dense rewards for RL;
Time-cost efficient path
of sub-tasks for RL;
Sub-tasks adaptive to
RL learning progress.
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RL Agent -

Time-cost of RL on sub-tasks
can provide dense and
accurate distance to evaluate
and train the path-planner.

Bottom-up traversal
accelerates the training of
RL agent as an easy-to-
hard sub-task curriculum.

(Training only)
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* Planning serves the RL agent as a co-pilot: Planner predicts sub-tasks to provide dense rewards for the RL agent
* RL’s time cost is used to train an adaptive planning policy: more accurate distance metric and training objective.
+ Top-down and Bottom-up traversal of the sub-task tree form an easy-to-hard training curriculum for each of them.

ZUTS



Experiment: 2D maze

Task: In a maze, the agent starts from an initial
state s to a goal state g. (s, g) are randomly
sampled from a uniform distribution. The agent
only receives a reward when it comes close to g.
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Experiment: Mujoco Ant

Task: A continuous space task, in which the agent
needs to navigate between initial and goal state.
When the agent reaches the goal state, it will
receive a large reward.
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Experiment: BipedalWalker
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Env. Steps (*1e6) Env. Steps (*1e6)
(a) Short agents (b) Default agents
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A Closer Look of Collaborative Training in CE
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Sub-task cost is

decreasing and

becoming more
uniform as training

episodes increase.

Deeper layer has
more sub-goals
interpolated by the
path-planner
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Please visit our poster at NeurlPS 2021 for Q/A and Discussion

Poster: 4038

CO-PILOT code: https://github.com/Shuang-AO/CO-PILOT
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