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Background

In many machine learning applications, to obtain an
intelligent agent, we frequently need large models and

big data.

For example, in image classification, we usually meet
big datasets such as ImageNet including more than 14

million labeled images, and use these big data to train
large deep neural networks (DNNs).




Background

Recently, Stochastic Gradient Descent (SGD) is a
workhorse in solving these large-scale machine learning
problems, due to only requiring a mini-batch samples
or even one sample at each iteration.

Adaptive gradient methods are one of the most
important variants of SGD, which use adaptive learning
rates and possibly incorporate momentum techniques,
so they generally require little parameter tuning and
enjoy faster convergence rate than SGD.
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Existing Adaptive Gradient Methods

In the paper, we consider solving the following stochastic optimization problem:
min f(z) := E¢p[f(2;¢)] (1)

where f(x) is a smooth and possibly nonconvex function, and £ is a random variable following an

unknown distribution D. Here X C R is a compact and convex set. The problem (I) is frequently
appears in many machine learning applications such as the expectation loss minimization.

In the subsection, we review the existing typical adaptive gradient methods. Recently, many adaptive
algorithms have been proposed to solve the problem (I), and achieve good performances. For
example, Adagrad [12] is the first adaptive gradient method with adaptive learning rate for each
individual dimension. Specifically, it adopts the following update form:

L+l = Tt — Nt —— \/_ Zgj (2)

where g; = V f(x;; &) is the stochastic gradient, and 1; = = with 1 > 0 is the step size. In fact, n;

7
only is the basic learning rate that is the same for all coordinates of variable x;, while \/W is the

effective learning rate for the i-th coordinate of x;, which changes across the coordinates.




Existing Adaptive Gradient Methods

Adam [20] is one of the most popular exponential moving average variant of Adagrad, which
combines the exponential moving average technique with momentum acceleration. Its update form:

my = ymg_1 + (1 — flfl)vf(fﬂt;&L Vg = Qa1 + (1 - ﬂz)(vf(ﬁt;ﬁt))z

me=m/(1—0af), B =ve/(1—0ab), meyr =z —merne/(V/ 0 +), 3)
where a; > 0, as > 0and e > 0, and 7; = % with n > 0. However, Reddi et al. found a

divergence issue of the Adam algorithm, and proposed a modified version of Adam (i.e., Amsgrad),
which adopts a new step instead of the debiasing step in (3) to ensure the decay of the effective
learning rate:

Uy = max(V¢—1,V¢), Tip1 = Tp — ??tmt/\/’ff_t- 4)




Existing Adaptive Gradient Methods

Due to using the coordinate-wise learning rates, these adaptive gradient methods frequently have
worse generalization performance than SGD (with momentum) [31]]. To improve the performance,
AdamW [24] uses a decoupled weight decay regularization, defined as

ge = V(@ &)+ Ary, my=orm_1+ (1 —a1)g, v =ogvi1 + (1 —a2)g;
e =me/(1 - ﬁi)} O = v /(1 — ﬂ‘g)a T4l = Tt — Mt (ﬂmt/(\/{TtJr g) + /\-Tt)a &)

where & > 0 and A > (. More recently, to improve the performance, AdaBelief adopts a stepsize
according to the ‘belief’ in the current gradient direction, defined as

my = onmy_1 + (1 — a1)Vf(24:&), v = a1+ (1 — o) (Vf(zeu&) —me)’ +e
?’hf =mt/(l—ai), {Ft=‘l}t/(1—&;), Tt =$t—ntﬁlt/(\/{?—t+5), Vtz 1 (6)

where a; > 0, a0 > 0, and 1y = % with 7 > 0, and £ > 0.




Existing Adaptive Gradient Methods

So far, these adaptive gradient methods use the coordinate-wise
learning rate.

At the same time, to improve the generalization performance, recently some effective adaptive
gradient methods 211 [11]] were proposed with adopting the global adaptive learning rates instead
of coordinate-wise counterparts. For example, AdaGrad-Norm [30] applies a global adaptive learning
rate to the following update form forall £ > 1

xp = x1 — NV f(2em136-1)/be. bF = by + ||V f(@e—1:&—1) %, bo >0, (7)
where 77 > 0. The adaptive-SGD [21]] adopts the global adaptive learning rate, defined as
k
Ne = , o T = T — eV (@36, (8)

(w+ STV f (i &)]2)

where k > 0, w > 0, and £ > 0. Subsequently, STORM [11]] not only uses a global adaptive learning

rate but also adopts the variance-reduced technique in gradient estimator to accelerate algorithm,
defined as

k
1/3°
(w+ Yl IV (@i énl?)
gr41 = VI (zep1;601) + (1 — enf)(ge — V(3 €41)),
where £ > 0, w > 0 and ¢ > 0.

N = Tiy1 = Ty — MGt 9)
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Super-Adam Algorithm

So far, the existing adaptive gradient methods only focus on some specific
adaptive learning rates. It is desired to design a universal framework for
practical algorithms of adaptive gradients with theoretical guarantee.

Insight from the dynamic mirror descent algorithm, we propose an efficient

adaptive gradient framework, i.e., Super-Adam Algorithm, based on the
momentum techniques.

Dynamic Mirror Descent iteration: min f (‘L )
xeC
o' = argmip { £(e') + (V£(a').0 —a) + D, (20" |
T Tt
Bregman Distance: D(Pt (:1’:, Q?t) = ¢ (a’;) — Pt (mt) — <V<,0t (:I:t), Tr — $t>

Bregman function varies with the iteration.



Super-Adam Algorithm

Algorithm 1 SUPER-ADAM Algorithm

1: Input: Total iteration 7', and tuning parameters {jt;, o }i_1, 7 > 0;

2: Initialize: v, = 0, and ;1 € X, sample one point £, compute g, = V f(x1:&1);
3: fort=1,2,....T do

Generate the adaptive matrix H; € R?*%; // Given two examples to update H;:
Case 1: given 3 € (0,1) and A > 0 to update H,

ve = Bue—1 + (1= B)V f(a4;)%, Hy = diag(/ve + A);

Case 2: given 3 € (0,1) and A > 0 to update H,

by = Bb; 1+ (1= B)||Vf(xs: &), Hy = (by + \) Ly:

Update ;41 = arg mingex {(g¢, ) + %(:g —x) T Hy(x — ) };
10:  Update 41 = (1 — pug)xs + p4X41;

N AR A

11:  Sample one point &1, and compute gr11 = a1V (Ter13&41) + (1 — 1) (g6 +
T(Vf(il?ﬂ_l; £t+1) — Vf($t5§t+1))], where 7 - {U.. 1},
12: end for

13: Qutput: (for theoretical) z; chosen uniformly random from {z; }]_,; (for practical ) z7-.




Super-Adam Algorithm

Let wy(x) = %SBTHt:E, we give a prox-function (i.e., Bregman distance) [4] 5] [14] associated with
wy(x), defined as:

Vi(z, x) = we(x) — [wﬁ(ﬁjg) + (Vwy(zy), z — mt)} = %(IB — iBt)THt(IB — x¢). (16)

Thus, the step 9 of Algorithm [T]is equivalent to the following generalized projection problem:
. : 1
Ti1 = argmin {(g;, ¥) + ;‘V},(:E,s':t)}, (17)

where v > 0. In fact, solving the above subproblem (I7) can be seen as a mirror descent iteration
[513]]. As in [14], we define a gradient mapping Gy (z¢, V f(x¢),7y) = %(Sﬂt — x ), where

1
xf, = arg min {(Vf(xe),z) + ;w(mﬁmt)}. (18)




Super-Adam Algorithm

At the step 11 of Algorithm[I] we use the stochastic gradient estimator g;; forall ¢ > 1:
gt+1 = 01V (@e1156041) + (L= aeg1) [9e + T(V(@e158041) — VI (@58e41))],  (14)

where 7 € {0,1} and oy € (0,1] forall ¢ > 1. When 7 = 1, we have g;11 = Vf(zs11;&01) +
(1 —a¢+1)(ge — Vf(z¢;&41)) forall ¢ > 1, which is a momentum-based variance reduced gradient
estimator used in STORM [[11]. When 7 = 0, we have g; .1 = a1V f (21158 41) + (1 — 1) ge
for all ¢ > 1, which is a basic momentum gradient estimator used in the Adam [20]].
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Convergence Analysis

4.1 Some Mild Assumptions

Assumption 1. Variance of unbiased stochastic gradient is bounded, i.e., there exists a constant
o > 0 such that for all x € X, it follows E[V f(x;€)] = Vf(z) and E|V f(z; &) — V f(x)|* < o2

Assumption 2. The function f(x) is bounded from below in X, i.e., f* = inf,.cx f(x).

Assumption 3. Assume the adaptive matrix H; for all t > 1 satisfies Hy = plg = 0, and p > ()
denotes a lower bound of the smallest eigenvalue of H; for all t = 1.

Assumption 1 is commonly used in stochastic optimization [12, B]. Assumption 2 ensures the feasi-
bility of the problem ([l). In fact, all adaptive algorithms in Table [l require these mild Assumptions
I and 2. Assumption 3 guarantees that the adaptive matrices {{; };~; used in our algorithm are
positive definite and their smallest eigenvalues have a lower bound p > (). From the above adaptive




Convergence Analysis

Assumption 1 is commonly used in stochastic optimization [14. [11]]. Assumption 2 ensures the feasi-
bility of the problem (Ij. In fact, all adaptive algorithms in Table [[[require these mild Assumptions
1 and 2. Assumption 3 guarantees that the adaptive matrices {H;}+>1 used in our algorithm are
positive definite and their smallest eigenvalues have a lower bound p > (. From the above adaptive
matrices used in our algorithm, we have p > A > 0. In fact, many adaptive algorithms also implicitly
use Assumption 3. For example, Zaheer et al. [33]] and Zhuang et al. [37]] used the following iteration
form to update the variable z: x4, = x; — mﬁﬂr—f forall ¢ = (0 and £ > 0, which is equivalent
to ¢y = x¢ — e H; 'm; with H, = diag(,/v; + ). Clearly, we have H, > eI; = 0. Ward
et al. [31]] applied a global adaptive learning rate to the update form in (7), which is equivalent
to the following form: z; = x;_1 — nH; 'V f(x;_1:&_1) with H; = b,I;. By the above ).
we have H; = --- = Hy = bgl; = 0. Li et al. and Cutkosky et al. [[L1] applied a global
adaptive learning rate to the update forms in (8) and (9), which is equivalent to z;, = x; — H, Lau,
where H; = (1/n:)Igand n; = k/(w + Sor, |V f(z:;&)1?) with k > 0,w > 0,a € (0,1).
By the above (8) and (9). we have H; = --- = Hy = (w*/k)I; = 0. Reddi et al. and
Chen et al. used the condition ©; = max(?;_1,v¢), and let H; = diag(./?;), thus we have
H, = --- = Hy = diag(\/t1) = /1= azdiag(|Vf(x1;&)]) = 0. Without loss of generality,
choosing an initial point x; and let (V f(x1:£1)); # 0 forall j € [d], we have H; = --- = H; = 0.
When X = R? and H, # I,, interestingly, our SUPER-ADAM algorithm also includes a class
of novel momentum-based quasi-Newton algorithms by choosing an approximated Hessian matrix
H;. In fact, the quasi-Newton algorithms [30), generally require the bounded approximated
Hessian matrices, i.e., & < Apin(H:) < Apax(H;) < Aforallt > 1, where &£ > £ > 0. Thus the
above Assumption 3 is reasonable and mild. Note that we mainly focus on the adaptive algorithms in
this paper, while the quasi-Newton algorithms only are the by-products of our algorithm.



Convergence Analysis

4.3 Convergence Analysis of SUPER-ADAM (7 = 1)

In this subsection, we provide the convergence analysis of our SUPER-ADAM (+ = 1) algorithm
when using the momentum-based variance reduced gradient estimator [9, 24]. The detail proofs are
given in the Appendix [A]l

Assumption 4. Each component function f(x; &) is L-smooth for all £ € D, such that
IVf(@;:8) = VIOl < Lz —yll, Yo,y e X.

Assumption 4 is widely used in the variance-reduced algorithms [[LT, 9]. According to Assumption

4, wehave |V f(z)-Vf(y)| = [[E[Vf(z;§) =V f(y; Ol SE[VF(2:6) -V (8l < Lllz—yl
for all x, y € X'. So the function f(x) is L-smooth.




Convergence Analysis

- - & & - - L
Theorem 1. In Algorithm [l under the Assumptions (1,2,3,4), given 7 = 1, u; = O
1/3 2.2
and oy = cp? forallt > 0,0 < 4 < ﬂzl,_b, Ali + %— < ¢ < %;—3 m =
3 9 i.-"l . .
max (3, k%, (ck)’ ’W) and k > 0, we have
G’m 622G
_ZEHgP& Thvf{r? || < _Z]E ;V[f = ‘].-'2 + 1.1”3 ] {18)

i=1

flz)—f" mt/ ¥ g2 k2co?
where G = e v e Ay o

Remark 1. Without loss of generality, let p = O(1), v = O(1), k = O(1) and m = O(1), we
have G = (lll{m +T)) = O{ 1). Thus, our SUPER-ADAM (7 = 1) algorithm has convergence
rate of O (= ). Consider —ir

In(m + T).

< €, we have T > € 3. Since our algorithm requires one sample

T1i/3 Tls

fo estimate the stochastic gradient g, at each iteration, and needs T' iterations. Thus, our SUPER-
ADAM (1 = 1) algorithm has a sample complexity of 1 - T = O(e™*) for finding an e-stationary
point of the problem ().




Convergence Analysis

Corollary 1. In Algorithm I under the above Assumptions (1, 2 3 4), let X = Rd, and given

T=1 = wandm_l_l—r;a forallt = 0, A —%, “-|-1m-" < c gmjc—zﬂ,
m > max (% (ck)3, k3, %g] and k > 0, we have
T
1 H 242G 2v/2G"
=Y BV € —2=t=T 17 ¢ “ ). (20)
T~ D T1/2 ml/6T1/3

where G' = 4L(f(x1) — f*) + 202 +4k ;; In(m +T).

Remark 2. Under the same conditions in Theorem (I} based on the standard metric E||V f(x;)||
the our SUPER-ADAM (7 = 1) algorithm still has a sample complexity of ffj{f_g} for finding
an e-stationary point of the problem (1) with X = RY. Interestingly, the right of the above in-
equality (20) includes a term =<5 ||

that can be seen as an upper bound of the condition

number of adaptive matrices {H,}]_,. In fact, when using H; given in the above case 1, we
have IHMMHT“H"” < Gafa

as in the existing adaptive gradient methods assuming the bounded

stochastic gradrenr \Vf(z:6)||l~ < Gy; When using H, given in the above case 2, we have
maxXy<i<T ||H:| < Gatot+A
7] — A

gradient |V f(z)|| < G2, When using H, given in the above case 3, we have

as in the existing adaptive gradient methods assuming the bounded full

III&KIEIET ||H:|| { L.'_},.
P — AT

. , , H ,
When using Hy given in the above case 4, we have IILMIE’E‘T I < E}f‘i‘ Note that we can’t
fake it far gmnrﬁ'd that these parameters p and m can clearly affects convergence rate since

2/3 1/3 .
_,_I + 1ﬂi 2 < ¢ < %, v = Eg7— and G’ includes the parameters c and m.



Convergence Analysis

4.4 Convergence Analysis of SUPER-ADAM (7 = ()

In this subsection, we provide the convergence analysis of our SUPER-ADAM (7 = 0) algorithm
when using the basic momentum stochastic gradient estimator [[16]. The detail proofs are given in
the Appendix A

Assumption 5. The function f(x) = E¢[f(2:€)] is L-smooth such that
IVf(z) = V)l < Lllz—yl, Vo,y € X.

Assumption 5 is widely used in the adaptive algorithms [28, 6, 31]]. Clearly, Assumption 5 is milder
than Assumption 4.
Theorem 2. In Algorithm [l under the Assumptions (1,2,3,5), given 7 = 0, p; = W (bpp1 =

,m > max{k?, (ck)?} and k > 0, we have

2Mml/ 2 2M

T1/2 + T1/4 7

172

) m /2 dLy
cpgforallt =2 0,0 <y < Fg-, =2 < e < -

1 T
?Z 1Ga (4, V f (1), ||=::—ZE[Mf

where M = 101" 4 %M + i{::’; In(m +T).

vk




Convergence Analysis

Remark 3. Without loss of generality, let p = O(1), k = O(1), m = O(1) and v = O(1), we
have M = O(In(m + T)) = O(1). Thus, our SUPER-ADAM (T = 0) algorithm has convergence
rate of {Hj(jl—lm) Consider ‘“—1,4 < € we have T > e *. Since our algorithm requires one sample
to estimate the stochastic gradient g, at each iteration, and needf T iterations. Thus, our SUPER-
ADAM (T = 0) algorithm has a sample complexity of 1 - T = O(e~ %) for finding an e-stationary
point of the problem ([II).

Corollary 2. In Algorithm [l under the above Assumptions (1,2,3,5), let X = RY, and given 7 = 0,

¢ '
pm!/? 1/2

fy = W. eyl — CLiy ﬁJ.F" all t E []. k= {]1 ¥ = TRLE ELTAF E [ ﬂ mk ) and m E

max{k?, (ck)?}, we have

max; << || Hy| (2x!2ﬂi” 2v2M' )
0 1

-
1
T §E||?f(rr}|| < T1/2 ml/AT1/4

where M' = 8L(f(x1) — f*) + 160? + 16mo? In(m + T').

Remark 4. Under the same conditions in Theorem [l based on the standard metric E||V f (x|
the our SUPER-ADAM (1 = 0) algorithm still has a sample complexity of O(e~*) for finding an
e-stationary point of the problem () with X = R,




Convergence Analysis

Table 1:

Convergence properties of the representative adaptive gradient algorithms for finding an

e-stationary point of the non-convex stochastic problem (), i.e., E||V f(x)|| < € or its equivalent

variants.

For fair comparison, we only give the gradient complexity and convergence rate in the

worst case without considering the sparsity of stochastic gradient. Here T denotes the whole num-
ber of iteration, b denotes mini-batch size, and d denotes dimension of data. ALR denotes adaptive

learning rate. 1 denotes the smoothness of each component function f(x;£); 2 denotes the smooth-

ness of objective function f(x) = E¢[f(x:£)]; 3 denotes the bounded noisy gradient V f(x:§); 4
denotes the bounded true gradient V f(x); 5 denotes that f(z) is Lipschitz continuous; 6 denotes
the smoothness of true gradient V f(x).

Algorithm Reference | Complexity Convergence Rate ALR Conditions
Adam/ YOGI (28] Ofe ¥ O{v,#_ + #v,-} specific 1,2,3.4
Generalized Adam [6] O (e=%) O \f;‘lgﬂﬂ ) specific 2.3 4
Padam 5] Ofe 1) O{V%T + =) specific 2.3, 4
Adaptive SGD [I7] O(e %) O ‘f:?ﬂ "";11]1}53“:' ) specific 2,5
AdaGrad-Norm [26] O(e™4) O( 5@] specific 2.4
Ada-Norm-SGD (8] Ofe=39) O 7377 ) specific 2,6
AdaBelief (1] O(e) r:;'(‘/;i’ﬂ”) specific | 2,3, 4
Adam™ [19] Ofe ™) O(777) specific 2,6
STORM 9] O3 | Of ““*%w VI | specific | 1,3,4
SUPER-ADAM (7 = 0) |  Ours o) | Of \/:Jf" + YDy iniversal 2
SUPER-ADAM (r = 1) |  Ours O(e ) Of Jl’;%” ";',’Ef 'y | universal 1
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Experimental Results

Table 2: Summary of setups in the experiments.

Task Architecture Dataset

Image Classification ResNet18 CIFAR-10
Image Classification VGGI19 CIFAR-100
Image Classification ResNet34 Image-Net

Language Modeling
Language Modeling

Two-layer LSTM  Wiki-Text2
Transtformer Wiki-Text2




Experimental Results

6.1 Image Classification Task

In the experiment, we conduct image classification task on CIFAR-10, CIFAR-100 and Image-Net
datasets. We show results for CIFAR-10 and CIFAR-100 in the main-text and for Image-net in the
Appendix B due to space limitation. Specifically, we perform training over ResNet-18 and
VGG-19 on CIFAR-10 and CIFAR-100 datasets. For all the optimizers, we set the batch size
as 128 and trains for 200 epochs. For the learning rates and other hyper-parameters, we do grid
search and report the best one for each optimizer. In Adam, Amsgrad and AdaBelief algorithms, we
set the learning rate as 0.001. In AdaGrad-Norm, the best learning rate is 17 for CIFAR-10 and 10
for CIFAR-100, respectively. In Adam™, we use the recommended tuning parameters in [17]]. In
STORM, the best result is obtained when w = 6, £ = 10 and ¢ = 100 for CIFAR-10, while w = 3,
k = 10 and ¢ = 100 for CIFAR-100. For our SUPER-ADAM algorithm. For both CIFAR-10 and
CIFAR-100 data-set, weset k = 1, m = 100, c = 40, v = 0.001l when 7 = 1, and k = 1, m = 100,
c =20, = 0.001 when 7 = (.
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Figure 5: Experimental Results of Image-Net by Different Optimizers over ResNet-34.



Experimental Results

6.2 Language Modeling Task

In the experiment, we conduct language modeling task on the Wiki-Text2 dataset. Specifically, we
train a 2-layer LSTM [13] and a 2-layer Transformer over the WiKi-Text2 dataset. We present the
results trained with LSTM here and defer the results for Transformer to the Appendix B. For the
LSTM, we use 650 dimensional word embeddings and 650 hidden units per-layer. What’s more, we
set the batch size as 20 and trains for 40 epochs with dropout rate (0.5. We also clip the gradients by
norm ().25 in case of the exploding gradient in LSTM. We also decrease the learning by 4 whenever
the validation error increases. For the learning rate, we also do grid search and report the best one
for each optimizer. In Adam and Amsgrad algorithms, we set the learning rate as 0.001 in LSTM
In AdaGrad-Norm algorithm, the best learning rate is 40. In Adam™ algorithm, we use the learning
rate 20. In AdaBelief algorithm, we set the learing rate 0.1. In STORM algorithm, we set w = 50,
k = 10 and ¢ = 100. In our SUPER-ADAM algorithm, we set £ = 1, m = 100, ¢ = 40, v = 0.001
when 7 = 1, while £ = 1, m = 100, ¢ = 20, v = 0.01 when 7 = ().
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Figure 6: Experimental Results of WikiText-2 by Different Optimizers over LSTM.
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Conclusions

1) We provide a novel insight to understand adaptive
gradient methods by using dynamic mirror descent
algorithm;

2) We propose a novel adaptive gradient framework
based on dynamic mirror descent algorithm;

3) We provide a convergence analysis framework for our
Super-Adam algorithm for nonconvex optimization.
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