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Why Inverse Reinforcement Learning (IRL)?

Which is the reward function for driving well?




Ziebart et al. 2008, Ziebart 2010

Maximum Causal Entropy IRL (MCE-IRL)

¢ Are features meant to capture purposeful characteristics of the observed expert
behaviour

Linear Reward Function

Ro(s) =< 0,¢(s) >  ¢(s) e R

If the transition dynamics are known, than P[St — g ‘ T, M] is known and we can compute:
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Assumptions

Linear Reward Function : Ro(s) =< 0, ¢(3) > ¢(3) c R

We introduce the occupancy

measure as. Phr = (1 =) Yoses 2o V' PLS: = s | m, M]¢(s)
. . . . TC - ]. s

The Value function is also linear: VMg = 15 < 0, Py =~

For any 6 , policies with same occupancy measure achieves the same value
function.



Maximum Causal Entropy IRL (MCE-IRL)
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Absence of mismatch



Robust MCE-IRL under transition dynamics mismatch
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Worst case upper bound for MCE-IRL
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Results with Linear Reward Function

Recall: Standard _
MCE-IRL (Ziebart,
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Choosing the right uncertainty set
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Continuous States and Actions

We propose an extension to continuous states and actions based on Relative Entropy IRL.

Relative Entropy-IRL

(Boularias et al.,
2011) is recovered
with
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Non Linear Reward Function

Notice: Standard

Deep MCE-IRL -4
(Wulfmeier et al. ___————\
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Non Linear Reward Function

Notice: Standard
Deep MCE-IRL
(Wulfmeier et al.
2015) is recovered

with oy = 1
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Thank you for your
attention
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