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Overview

Topology optimization aims to 
find optimal shapes with 
respect to some forces and 
boundary conditions

● Our goal is to use 
DNNs as an implicit 
representation of the 
shape

● We analyse it through 
NTK theory

● We suggest tools to 
improve 
coordinates-based 
generative models

● We analize an analogy 
between the NTK and a 
filter
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Algorithm

       Pointwise 
FCNN

SIMP

Loss function C is called the compliance.

Embedding zi = ϕ(pi ), ϕ : R2 −→ Rn0

Fully-connected DNN: xi = fθ(zi ), fθ : Rn0 −→ R

Mass control: we find b̄ such that
∑

i σ(xi + b̄) = V0

Implicit differenciation: ∇X C = DX∇Y C
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Example
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Our method achieves excellent numerical results in a small number of
iterations
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Comparison with traditional filtering in SIMP

Filtering matrix        SIMP

Filtering aims to remove checkerboards but it has drawbacks
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Neural Networks

NTK parametrization of FCNNs:
a0(x) = x , ãl+1(x) = α√nl

W lal (x) + βbl , al+1(x) = µ
(
ãl+1(x)

)
,

EX∼N (0,1)[µ(X )2] = 1

NTK: ΘL
θ(z , z ′) =

∑
p
∂fθ

∂θp
(z) ∂fθ

∂θp
(z ′) = (∇θfθ(z)|∇θfθ(z ′))

Gradient flow ∂tX (θ(t)) = −Θ̃L
θ(t)∇X C

Gradient flow in our method
∂tY NN(θ(t)) = −DX (t)Θ̃L

∞DX (t)∇Y C(Y NN(θ(t)))

Gradient flow without neural network
∂tY MF(t) = −DX (t)TT T DX (t)∇Y C(Y MF(t))
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a0(x) = x , ãl+1(x) = α√nl

W lal (x) + βbl , al+1(x) = µ
(
ãl+1(x)

)
,

EX∼N (0,1)[µ(X )2] = 1

NTK: ΘL
θ(z , z ′) =

∑
p
∂fθ

∂θp
(z) ∂fθ

∂θp
(z ′) = (∇θfθ(z)|∇θfθ(z ′))

Gradient flow ∂tX (θ(t)) = −Θ̃L
θ(t)∇X C

Gradient flow in our method
∂tY NN(θ(t)) = −DX (t)Θ̃L

∞DX (t)∇Y C(Y NN(θ(t)))

Gradient flow without neural network
∂tY MF(t) = −DX (t)TT T DX (t)∇Y C(Y MF(t))

Benjamin Dupuis, Arthur Jacot Chair of Statistical Field Theory - EPFLDNN based topology optimization: spatial invariance and neural tangent kernelOctober 17, 2021 5 / 13



Neural Networks

NTK parametrization of FCNNs:
a0(x) = x , ãl+1(x) = α√nl
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Ensuring spatial invariance

analogy between Θ̃∞ and TT T

Ensuring spatial invariance of the filter is crucial
Idea: introduce spatial invariance of the NTK via embeddings.

Proposition
Let ϕ : Rd → Rn0 for d > 2 and any finite n0. If ϕ satisfies
ϕ(x)Tϕ(x ′) = K (‖x − x ′‖) for some continuous function K then both ϕ and K
are constant.

We propose embeddings ensuring spatial invariance of the NTK
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Torus embedding

The NTK is invariant under rotation (function of zT z ′, ‖z‖, ‖z ′‖)
We transfer this property to translation invariance
R2 3 p = (p1, p2) 7−→ ϕ(p) = r(cos(δp1), sin(δp1), cos(δp2), sin(δp2))
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Fourier Features embeddings

Bochner theorem, for a positive kernel: k(x) = k(0)Eω∼Q

[
e iω.x

]

we can formulate embeddings invariant by rotation and translation:

ϕ(p)i =
√

2k(0) sin(wT
i p + π

4 + bi )

With w ∼ Q and bi i.i.d. random variable from a symmetric distribution.
Gaussian embedding: w ∼ N (0, 1

`2 )

Proposition
Let ϕ be an embedding as described above for a positive radial kernel k ∈ L1(Rd )
with k(0) = 1, k ≥ 0. There is a filter function g : R→ R and a constant C such
that for all p, p′, in probability:

lim
n0→∞

Θ∞(ϕ(p), ϕ(p′)) = C + (g ? g)(p − p′),
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Experimental results - spectral decomposition of the NTK
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Experimental results - Filter radius control

We are able to define and control a ”filtering radius”

R1/2 = 0.49 R1/2 = 0.98

R1/2 = 1.37 R1/2 = 1.96
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Experimental results - Filter radius control
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up sampling

Resulting density field Up-sampling
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Thank you
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