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Overview

Topology optimization aims to e Our goal is to use
find optimal shapes with DNNs as an implicit
respect to some forces and representation of the
boundary conditions shape

e We analyse it through
NTK theory

e We suggest tools to
improve
coordinates-based
generative models

—_—

© %. E
E e We analize an analogy

between the NTK and a
filter
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Pointwise
FCNN

Backpropagation

Loss function C is called the compliance.
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Backpropagation

Loss function C is called the compliance.
e Embedding z; = ¢(p;), ¢ : R> — R™
@ Fully-connected DNN: x; = fy(z;), fp : R™ — R
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Backpropagation

Loss function C is called the compliance.
e Embedding z; = ¢(p;), ¢ : R> — R™
@ Fully-connected DNN: x; = fy(z;), fp : R™ — R
o Mass control: we find b such that 3>, o(x; + b) = V
@ Implicit differenciation: VxC = DxVyC
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Example

Resulting density field
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@ Our method achieves excellent numerical results in a small number of
iterations
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Comparison with traditional filtering in SIMP

Density field on a grid of N points Physical solver

Filtering matrix
X =T.X

(i1, N —(Y;)1, N 0= F
VO i V(' ' — [T
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VzC=T"'VxC
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Comparison with traditional filtering in SIMP

Density field on a grid of N points

Filtering matrix
X =T.X

VzC=T"'VxC

Physical solver
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SIMP
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@ Filtering aims to remove checkerboards but it has drawbacks

il

>
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Neural Networks

@ NTK parametrization of FCNNs:
(x)=x, 3THx)=-W'd(x)+pb, a"(x)=p(3"(x)),

NG
° Exwnop[u(X)?] =1
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Neural Networks

@ NTK parametrization of FCNNs:
(x)=x, 3THx)=-W'd(x)+pb, a"(x)=p(3"(x)),

NG
Ex~aro,n[n(X)’] =1
NTK: ©(z, ') = X5, 20 (2) 26 () = (Vo 2) Vofa())
o Gradient flow 9;X(6(t)) = —éé(t)VXC
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Neural Networks

@ NTK parametrization of FCNNs:

Ax)=x, 3I*(x)= %W’a’(x) +Bb',  at(x) = p(3"(x)),

° Exwnop[u(X)?] =1
o NTK: ©}(2,2) = 53, 26(2) 22:(2') = (Vo (2) Voho(2))

o Gradient flow 9:X(0(t)) = —8},,VxC

Gradient flow in our method

0:Y"N(0(t)) = —Dx(£)05. Dx(£) Vy C(Y™(4(t)))
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Neural Networks

@ NTK parametrization of FCNNs:

Ax)=x, 3I*(x)= %W’a’(x) +Bb',  at(x) = p(3"(x)),

° Exwnop[u(X)?] =1
o NTK: ©}(2,2) = 53, 26(2) 22:(2') = (Vo (2) Voho(2))

o Gradient flow 9:X(0(t)) = —8},,VxC

Gradient flow in our method

0:Y"N(0(t)) = —Dx(£)05. Dx(£) Vy C(Y™(4(t)))

Gradient flow without neural network

2 YME(t) = —Dx(t) TT " Dx(t)Vy C(YMF(1))
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Ensuring spatial invariance

o analogy between &, and TTT
@ Ensuring spatial invariance of the filter is crucial

o Idea: introduce spatial invariance of the NTK via embeddings.
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Ensuring spatial invariance

o analogy between &, and TTT
@ Ensuring spatial invariance of the filter is crucial
o Idea: introduce spatial invariance of the NTK via embeddings.

Proposition

Let ¢ : R — R™ for d > 2 and any finite ng. If ¢ satisfies
o(x)Tp(x") = K(||x — x'||) for some continuous function K then both ¢ and K

are constant.
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Ensuring spatial invariance

o analogy between &, and TTT
@ Ensuring spatial invariance of the filter is crucial
o Idea: introduce spatial invariance of the NTK via embeddings.

Proposition

Let ¢ : R — R™ for d > 2 and any finite ng. If ¢ satisfies
o(x)Tp(x") = K(||x — x'||) for some continuous function K then both ¢ and K

are constant.

@ We propose embeddings ensuring spatial invariance of the NTK

October 17, 2021
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Torus embedding

e The NTK is invariant under rotation (function of z"Z’, ||z|, |

Z'|[)

@ We transfer this property to translation invariance

e R23 p=(p1,p2) — p(p) = r(cos(ép1),sin(dp1), cos(dp2),sin(dp2))
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Torus embedding

e The NTK is invariant under rotation (function of z"Z', ||z||, ||Z’]|)

@ We transfer this property to translation invariance

o R?> p = (p1,p2) — @(p) = r(cos(dp1),sin(épy), cos(ép2), sin(dp2))

Og(t)(Xo, - ) . V ©Og(p) (X0, - )
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proposition

The square root of the Gram Matrix /O, is a discrete convolution matrix
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Fourier Features embeddings

@ Bochner theorem, for a positive kernel: k(x) = k(0)E,~q [e"w'x}
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Fourier Features embeddings

@ Bochner theorem, for a positive kernel: k(x) = k(0)E,~q [e"“'x}

@ we can formulate embeddings invariant by rotation and translation:

o(p)i = /2k(0)sin(w;" p + % + by)

o With w ~ Q and b; i.i.d. random variable from a symmetric distribution.

e Gaussian embedding: w ~ N(0, %
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Fourier Features embeddings

@ Bochner theorem, for a positive kernel: k(x) = k(0)E,~q [e"“'x}

@ we can formulate embeddings invariant by rotation and translation:

o(p)i = /2k(0)sin(w;" p + % + by)

o With w ~ Q and b; i.i.d. random variable from a symmetric distribution.

e Gaussian embedding: w ~ N(0, %

Proposition

Let ¢ be an embedding as described above for a positive radial kernel k € L}(R9)
with k(0) =1, k > 0. There is a filter function g : R — R and a constant C such

that for all p, p’, in probability:

lim ©(e(p), ¢(p') = C+(gxg)(p—p),

ng— o0
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Experimental results - spectral decomposition of the NTK

X Sorted ei of the NTK at initiali
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Experimental results - Filter radius control

@ We are able to define and control a "filtering radius”

El/Z =0.49 él/Z =0.98

Rip=1.37 Rip=1.96
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Experimental results - Filter radius control
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up sampling

Resulting density field Up-sampling
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Resulting density field Up-sampling
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