

Shape from Blur: Recovering Textured 3D Shape and Motion of Fast Moving Objects

Denys Rozumnyi¹, Martin R. Oswald^{1,3}, Vittorio Ferrari², Marc Pollefeys¹

¹Department of Computer Science, ETH Zurich, Switzerland

²Google Research, Zurich, Switzerland

³University of Amsterdam, Netherlands

35th Conference on Neural Information Processing Systems (NeurIPS 2021)

NEURAL INFORMATION PROCESSING SYSTEMS

ETH zürich Google Research

Motivation

$2D \rightarrow 3D$

Outputs

Classical problem formulation

- Object with appearance F and shape M moving over static background B \bullet
- H the blur caused by motion along trajectory lacksquare

Shape from Blur generalization to 3D: ullet

Method overview

Contribution: Novel FMO deblurring method that for the first time jointly estimates from a **single input** image the 3D shape, texture, and motion of an object (initial 6-DoF pose, 3D translation and 3D rotation).

ETHZÜRICH Google Research I UNIVERSITY OF AMSTERDAM

Method overview

ETHZÜRICH Google Research I UNIVERSITY OF AMSTERDAM

Method overview

ETHZÜRICH Google Research I UNIVERSITY OF AMSTERDAM

Method overview

"DeFMO": [11] Rozumnyi et al. "DeFMO: Deblurring and Shape Recovery of Fast Moving Objects", CVPR 2021

Method overview

Loss optimization

Torus

Input

Sphere 1

8

Loss optimization

D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021

Loss optimization

D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021

Ground truth

SSIM 0.767

PSNR 25.816 SSIM 0.753

Correlation

Results

Results

Results

Qualitative results

Inputs

Outputs

D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021

Ground truth

Benchmark evaluation

		Hard			Medium			Easy		
Method	Falling Objects [21]			TbD-3	TbD-3D Dataset [22]			TbD Dataset [18]		
	TIoU↑	PSNR†	SSIM↑	TIoU↑	PSNR ↑	SSIM↑	TIoU1	► PSNR↑	SSI	
Jin et al. [3]	N / A	23.54	0.575	N/A	24.52	0.590	N / A	24.90	0.5	
DeblurGAN [2]	N / A	23.36	0.588	N/A	23.58	0.603	N/A	24.27	0.5	
TbD [18]	0.539	20.53	0.591	0.598	18.84	0.504	0.542	23.22	0.6	
TbD-3D [22]	0.539	23.42	0.671	0.598	23.13	0.651	0.542	25.21	0.6	
DeFMO [11]	0.684	26.83	0.753	0.879	26.23	0.699	0.550	25.57	0.6	
SfB (ours)	0.701	27.18	0.760	0.921	26.54	0.722	0.610	25.66	0.6	

various shapes complex textures

mostly spherical complex textures

mostly spherical uniform textures

D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021

Novel views

Input

Output

Novel views

Limitations

- Extreme camera motion. ullet

• Prototype shape deformation – the shape often remains unchanged along unobserved directions (pen).

Conclusion

- SfB is the first solution to the problem of **3D shape** and **motion** estimation from a **single blurry input**. We set a new state of the art on **2D** fast moving object **deblurring**. ullet
- Open source: https://github.com/rozumden/ShapeFromBlur ullet

