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Motivation

1D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021
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Classical problem formulation
• Object with appearance F and shape M moving over static background B

• H - the blur caused by motion along trajectory

2

Foreground

I = H ∗ F + (1− H ∗M) B

D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021

I = H ∗ F + (1− H ∗M) B

• Shape from Blur generalization to 3D:



Method overview
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137
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measures the input image reconstruction according to (4). It is the difference between the observed139
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136
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Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133
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3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140
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4

D. Rozumnyi et al.: Shape from Blur @ NeurIPS 2021

Contribution: Novel FMO deblurring method that for the first time jointly estimates from a single input 
image the 3D shape, texture, and motion of an object (initial 6-DoF pose, 3D translation and 3D rotation). 
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116
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mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144
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method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .
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directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144
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method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .
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the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145
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Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113
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mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119
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the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127
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them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)

4

10.0 15.0 20.0 25.0 30.0 35.0

0.02

0.04

0.06

PSNR

Im
ag

e
fo

rm
at

io
n

lo
ss

L
I

Data
Trend

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

SSIM

Im
ag

e
fo

rm
at

io
n

lo
ss

L
I

Data
Trend

Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)

4

10.0 15.0 20.0 25.0 30.0 35.0

0.02

0.04

0.06

PSNR

Im
ag

e
fo

rm
at

io
n

lo
ss

L I

Data
Trend

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

SSIM

Im
ag

e
fo

rm
at

io
n

lo
ss

L I

Data
Trend

Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1
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(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159

5

ae
ro

bi
e

D
eF

M
O

[1
1]

0.
82

6
31

.9
8

Sf
B

(o
ur

s)

0.
84

9
33

.0
7

G
T

vo
lle

yb
al

l

D
eF

M
O

[1
1]

0.
76

7
25

.2
9

Sf
B

(o
ur

s)

0.
90

8
28

.1
1

G
T

fo
ot

ba
ll

D
eF

M
O

[1
1]

0.
66

3
27

.2
1

Sf
B

(o
ur

s)

0.
82

3
29

.4
1

G
T

SS
IM

":
PS

N
R
":
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158
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Figure3:ResultsontheTbD-3D[22]dataset.WecomparetheproposedShape-from-Blur(SfB)
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reconstructedinputimageÎisalmostindistinguishablefromtherealinputimageI.

Wenoticedthat(5)isdirectlyrelatedtothequalityofreconstructionanddeblurringasmeasuredby 141

theevaluationmetricsPSNRandSSIMontheFMOdeblurringbenchmark[11](Fig.2).However, 142

directlyminimizingtheloss(5)ischallengingsinceitisunder-constrainedandwithmanylocal 143

minima,asobservedexperimentally.Therefore,additionalpriorsandregularizersarevital. 144

Silhouetteconsistencyloss.Anotherimportantprioristhattherenderedsilhouettesshouldstay 145

closetosub-framemasksM⌧estimatedbyDeFMO[11].Thisguidesthe3Dshapeestimation 146

withtheapproximateobjectlocationintheimage,whichhelpsespeciallyintheearlystepsofthe 147

optimizationprocess.Thesilhouetteconsistencyisdefinedas 148
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methodandtheinputDeFMOmasks. 150

Laplacianshaperegularizationloss.Duetothe3D-to-2Dprojection,manymeshesgeneratethe 151

sameinputimage,especiallyinthemeshareasnotvisibleintheimage(‘backsides’oftheobject). 152
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regularizationLL(⇥). 154
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1
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⌘
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(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)

4

Discrete time samples from a continuous, normalized time domain = input image exposure time

10.0 15.0 20.0 25.0 30.0 35.0

0.02

0.04

0.06

PSNR

Im
ag

e
fo

rm
at

io
n

lo
ss

L
I

Data
Trend

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

SSIM

Im
ag

e
fo

rm
at

io
n

lo
ss

L
I

Data
Trend

Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128
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moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1

0
RS

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧

⌘
·B .

(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)

4

10.0 15.0 20.0 25.0 30.0 35.0

0.02

0.04

0.06

PSNR

Im
ag

e
fo

rm
at

io
n

lo
ss

L
I

Data
Trend

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.02

0.04

0.06

SSIM

Im
ag

e
fo

rm
at

io
n

lo
ss

L
I

Data
Trend

Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)
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(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159

5

ae
ro
bi
e

D
eF
M
O
[1
1]

0.
82
6

31
.9
8

Sf
B
(o
ur
s)

0.
84
9

33
.0
7

G
T

vo
lle
yb
al
l

D
eF
M
O
[1
1]

0.
76
7

25
.2
9

Sf
B
(o
ur
s)

0.
90
8

28
.1
1

G
T

fo
ot
ba
ll

D
eF
M
O
[1
1]

0.
66
3

27
.2
1

Sf
B
(o
ur
s)

0.
82
3

29
.4
1

G
T

SS
IM
":

PS
N
R
":
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Figure3:ResultsontheTbD-3D[22]dataset.WecomparetheproposedShape-from-Blur(SfB)
methodwiththepreviousstate-of-the-artDeFMO[11]andthegroundtruthfromahigh-speed
camera.SfBisthefirstmethodtoreconstructthetextured3Dshapefromasingleblurredimage.The
reconstructedinputimageÎisalmostindistinguishablefromtherealinputimageI.

Wenoticedthat(5)isdirectlyrelatedtothequalityofreconstructionanddeblurringasmeasuredby 141

theevaluationmetricsPSNRandSSIMontheFMOdeblurringbenchmark[11](Fig.2).However, 142

directlyminimizingtheloss(5)ischallengingsinceitisunder-constrainedandwithmanylocal 143

minima,asobservedexperimentally.Therefore,additionalpriorsandregularizersarevital. 144

Silhouetteconsistencyloss.Anotherimportantprioristhattherenderedsilhouettesshouldstay 145

closetosub-framemasksM⌧estimatedbyDeFMO[11].Thisguidesthe3Dshapeestimation 146

withtheapproximateobjectlocationintheimage,whichhelpsespeciallyintheearlystepsofthe 147

optimizationprocess.Thesilhouetteconsistencyisdefinedas 148
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wheretheIntersectionoverUnion(IoU)iscomputedbetweenthemeshsilhouettesestimatedbyour 149

methodandtheinputDeFMOmasks. 150

Laplacianshaperegularizationloss.Duetothe3D-to-2Dprojection,manymeshesgeneratethe 151

sameinputimage,especiallyinthemeshareasnotvisibleintheimage(‘backsides’oftheobject). 152

Thus,inordertofavorsmoothmeshes,weaddacommonlyused[23,25,24]Laplacianshape 153

regularizationLL(⇥). 154

Texturesmoothnessloss.SmoothtexturesarefavoredbyaddingatotalvariationlossLT(⇥)on 155
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1

0
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�
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�
d⌧

⌘
·B .

(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1

0
RS

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧

⌘
·B .

(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
Z 1

0
RF

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧+

⇣
1�

Z 1

0
RS

�
M(⇥, r+⌧ ·�r, t+⌧ ·�t)

�
d⌧

⌘
·B .

(4)
Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159
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Table 1: Evaluation on FMO benchmark. The best-performing method is highlighted. Classical
deblurring methods [2, 3] do not estimate the object trajectory, thus their TIoU is not defined (N / A).
The datasets are sorted from the most challenging one [21] to the easiest one [18] from left to right.

Method Falling Objects [21] TbD-3D Dataset [22] TbD Dataset [18]

TIoU" PSNR" SSIM" TIoU" PSNR" SSIM" TIoU" PSNR" SSIM"
Jin et al. [3] N / A 23.54 0.575 N / A 24.52 0.590 N / A 24.90 0.530
DeblurGAN [2] N / A 23.36 0.588 N / A 23.58 0.603 N / A 24.27 0.537
TbD [18] 0.539 20.53 0.591 0.598 18.84 0.504 0.542 23.22 0.605
TbD-3D [22] 0.539 23.42 0.671 0.598 23.13 0.651 0.542 25.21 0.674

DeFMO [11] 0.684 26.83 0.753 0.879 26.23 0.699 0.550 25.57 0.602
SfB (ours) 0.701 27.18 0.760 0.921 26.54 0.722 0.610 25.66 0.659

Joint loss. The joint loss is a weighed sum of the image formation loss (5), the silhouette consis-160

tency (6), Laplacian shape regularization, and texture smoothness:161

L = LI(⇥, r,�r, t,�t; I, B) + LS(⇥, r,�r, t,�t) + LT (⇥) + �L · LL(⇥) . (7)

We infer the parameters {⇥, r,�r, t,�t} describing the object texture, shape and motion by test-time162

optimization on the input image I and background B.163

Technical details. The weight of the Laplacian shape regularization is set to �L = 1000. There are164

no weights for other terms since the default unit weight produced good results. We use the Kaolin [38]165

implementation of DIB-R [23], and set the smoothness term for soft mask rasterization to 7000�1.166

We use a median of the previous five frames in a video as an approximation of the background.167

3.2 Loss optimization168

We optimize the joint loss (7) using ADAM [39] with the fixed learning rate 0.1 for 500 iterations169

in the PyTorch [40] framework. This is made possible by using a differentiable renderer, which170

enables to compute gradients of the rendered image w.r.t. the object parameters. Optimization for171

500 iterations of a mesh with 1212 vertices, 2420 faces, 100⇥ 100 texture map, and input image of172

240⇥ 320 pixels takes around 60 seconds on a single 8 GB Nvidia GTX 1080 GPU.173

Prototypes. We provide the method with a set of three prototypes. The best prototype is automati-174

cally selected based on the lowest value of the image formation loss (5) after optimization starting175

from each prototype in turn. The first prototype is a sphere with 1212 vertices, 2420 faces, and simple176

spherical projection texture mapping. The second prototype is a bigger sphere with 1538 vertices,177

3072 faces, and with more sophisticated Voronoi texture mapping [41]. The third prototype is a torus178

with a similar number of vertices and faces and the same Voronoi mapping.179

Normalization. The mesh vertices are normalized to zero center of mass and unit variance,180

maintaining the normalization throughout the whole optimization process. Texture values are181

normalized by Sigmoid activation. Translation vectors t and t+�t are estimated as a hyperbolic182

tangent (tanh) activation with normalization such that the 2D object projection is always visible in183

the image, i.e. (�1,�1) is the bottom left corner of the image, (1, 1) is the top right corner, a z184

coordinate of �1 indicates an object covering the whole field-of-view (FOV), and z = 1 indicates185

covering 5% of FOV. Rotations r,�r are represented by quaternions, and �r is capped to represent186

at most 120 degrees total rotation. The mesh is initialized with a uniform grey texture, zero vertex187

offsets, zero rotation, zero translation, and placed in the center of the image.188

To summarize, the proposed method estimates the object’s textured mesh ⇥ and its motion189

{r,�r, t,�t} by test-time optimization. The input image is explained by these object parame-190

ters by minimizing the joint loss (7) that consists of the image formation loss (5) and suitable191

regularizers.192

4 Evaluation193

Datasets. We evaluate our method on four datasets. Three datasets are real-world ones from the194

FMO deblurring benchmark [11]: TbD [18], TbD-3D [22], and Falling Objects [21]. The fourth195
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tency (6), Laplacian shape regularization, and texture smoothness:161
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We infer the parameters {⇥, r,�r, t,�t} describing the object texture, shape and motion by test-time162

optimization on the input image I and background B.163

Technical details. The weight of the Laplacian shape regularization is set to �L = 1000. There are164

no weights for other terms since the default unit weight produced good results. We use the Kaolin [38]165

implementation of DIB-R [23], and set the smoothness term for soft mask rasterization to 7000�1.166

We use a median of the previous five frames in a video as an approximation of the background.167

3.2 Loss optimization168

We optimize the joint loss (7) using ADAM [39] with the fixed learning rate 0.1 for 500 iterations169

in the PyTorch [40] framework. This is made possible by using a differentiable renderer, which170

enables to compute gradients of the rendered image w.r.t. the object parameters. Optimization for171

500 iterations of a mesh with 1212 vertices, 2420 faces, 100⇥ 100 texture map, and input image of172

240⇥ 320 pixels takes around 60 seconds on a single 8 GB Nvidia GTX 1080 GPU.173

Prototypes. We provide the method with a set of three prototypes. The best prototype is automati-174

cally selected based on the lowest value of the image formation loss (5) after optimization starting175

from each prototype in turn. The first prototype is a sphere with 1212 vertices, 2420 faces, and simple176

spherical projection texture mapping. The second prototype is a bigger sphere with 1538 vertices,177

3072 faces, and with more sophisticated Voronoi texture mapping [41]. The third prototype is a torus178

with a similar number of vertices and faces and the same Voronoi mapping.179

Normalization. The mesh vertices are normalized to zero center of mass and unit variance,180

maintaining the normalization throughout the whole optimization process. Texture values are181

normalized by Sigmoid activation. Translation vectors t and t+�t are estimated as a hyperbolic182

tangent (tanh) activation with normalization such that the 2D object projection is always visible in183

the image, i.e. (�1,�1) is the bottom left corner of the image, (1, 1) is the top right corner, a z184

coordinate of �1 indicates an object covering the whole field-of-view (FOV), and z = 1 indicates185

covering 5% of FOV. Rotations r,�r are represented by quaternions, and �r is capped to represent186

at most 120 degrees total rotation. The mesh is initialized with a uniform grey texture, zero vertex187

offsets, zero rotation, zero translation, and placed in the center of the image.188

To summarize, the proposed method estimates the object’s textured mesh ⇥ and its motion189

{r,�r, t,�t} by test-time optimization. The input image is explained by these object parame-190

ters by minimizing the joint loss (7) that consists of the image formation loss (5) and suitable191

regularizers.192

4 Evaluation193

Datasets. We evaluate our method on four datasets. Three datasets are real-world ones from the194

FMO deblurring benchmark [11]: TbD [18], TbD-3D [22], and Falling Objects [21]. The fourth195
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU

⇣
M⌧ ,RS

�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)

�⌘
d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148

LS(⇥, r,�r, t,�t) = 1�
Z 1

0
IoU
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�
M(⇥, r+ ⌧ ·�r, t+ ⌧ ·�t)
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d⌧ , (6)

where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158

synthesis.159
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146

with the approximate object location in the image, which helps especially in the early steps of the147

optimization process. The silhouette consistency is defined as148
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where the Intersection over Union (IoU) is computed between the mesh silhouettes estimated by our149

method and the input DeFMO masks.150

Laplacian shape regularization loss. Due to the 3D-to-2D projection, many meshes generate the151

same input image, especially in the mesh areas not visible in the image (‘back sides’ of the object).152

Thus, in order to favor smooth meshes, we add a commonly used [23, 25, 24] Laplacian shape153

regularization LL(⇥).154

Texture smoothness loss. Smooth textures are favored by adding a total variation loss LT (⇥) on155

the predicted texture map. Thanks to this term, the texture in the unobserved parts of the mesh is a156

smooth transition between the edges of the observed parts. Without LT (⇥), our method produces157

random noise pixels as texture in the unobserved parts, which degrade the quality of novel view158
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Figure 3: Results on the TbD-3D [22] dataset. We compare the proposed Shape-from-Blur (SfB)
method with the previous state-of-the-art DeFMO [11] and the ground truth from a high-speed
camera. SfB is the first method to reconstruct the textured 3D shape from a single blurred image. The
reconstructed input image Î is almost indistinguishable from the real input image I .

We noticed that (5) is directly related to the quality of reconstruction and deblurring as measured by141

the evaluation metrics PSNR and SSIM on the FMO deblurring benchmark [11] (Fig. 2). However,142

directly minimizing the loss (5) is challenging since it is under-constrained and with many local143

minima, as observed experimentally. Therefore, additional priors and regularizers are vital.144

Silhouette consistency loss. Another important prior is that the rendered silhouettes should stay145

close to sub-frame masks M⌧ estimated by DeFMO [11]. This guides the 3D shape estimation146
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130

Î(·) =
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129

moving object is denoted as Î(⇥, r,�r, t,�t;B) and defined by130
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.

the 3D translation and 3D rotation it undergoes during the image exposure time. The key idea of our112

method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116

Shape representation. We represent the shape and appearance of an object by a textured triangular117

mesh ⇥, which consists of a set of vertices, a set of faces, and a texture map with a given texture118

mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127

mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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method is to recover the textured 3D shape and motion parameters that best explain the input image.113

Concretely, we render the reconstructed object with its motion blur and define a loss comparing the114

resulting image with the input. We then find the texture, shape and motion parameters that minimize115

this loss.116
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mapping. The mesh topology (the set of faces and their connectivity) is fixed. Our method estimates119

offsets from the initial vertex positions of a given prototype shape to deform it into the 3D shape of120

the object in the input image. We automatically select a prototype shape out of a given set based on121

the quality of the rendered image (see Sec. 3.2).122

Image formation model. We define two rendering functions RF and RS that get as input a mesh123

⇥ and output the 2D projected object appearance F = RF (⇥) and the object silhouette S = RS(⇥).124

We use the Differentiable Interpolation-based Renderer (DIB-R) [23] to approximate functions RF125

and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126
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mesh vertices around their center of mass by a quaternion-encoded 3D rotation r 2 R4 and translates128

them by a 3D vector t 2 R3. Then, the generalized rendering-based image formation model for a fast129
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140

LI(⇥, r,�r, t,�t; I, B) = kI � Î(⇥, r,�r, t,�t;B)k1 . (5)
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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Figure 2: Correlation between the image formation loss and evaluation metrics (PSNR/SSIM).

Linear regression of the measured data shows the trend: the lower is the image formation loss, the
better are the evaluation metrics. Thus, it can be viewed as a surrogate for the evaluation metrics.
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and RS to make the rendering step differentiable. The camera is assumed to be static (moving camera126

is discussed in Sec. 4.3). Furthermore, we define a mesh motion function M(⇥, r, t) that rotates127
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Eventually, we assume the generated image Î to be equal to the input image I , where time step ⌧ = 0131

corresponds to the initial object pose, and time step ⌧ = 1 corresponds to the final object pose in132

the given input image. This image formation model can be seen as a generalization of all previous133

formation models for FMOs (1), (2), (3). In comparison to them, (4) explicitly models the object’s134

3D shape and 3D motion. Thus, the parameters that describe the object and its motion are the motion135

representation {r,�r, t,�t} and ⇥, which contain the mesh vertices offsets and the texture map.136

3.1 Loss terms137

Image formation loss. The main component of our method is the image formation loss that138

measures the input image reconstruction according to (4). It is the difference between the observed139

input image and its reconstruction by the rendering-based formation model:140
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Loss optimization
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Loss optimization
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Correlation
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Results
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Qualitative results
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Benchmark evaluation
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Novel views
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Novel views
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Limitations
• Prototype shape deformation – the shape often remains unchanged along unobserved directions (pen).

• Extreme camera motion.
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Conclusion
• SfB is the first solution to the problem of 3D shape and motion estimation from a single blurry input.
• We set a new state of the art on 2D fast moving object deblurring.

• Open source: https://github.com/rozumden/ShapeFromBlur
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