Directed Probabilistic Watershed

Enrique Fita Sanmartín

Sebastian Damrich

Fred A. Hamprecht

HCI/IWR at Heidelberg University

Transductive semi-supervised learning algorithm on **directed** graphs

⇒ Directed Probabilistic Watershed

- Web graphs
- Citation graphs

Probabilistic Watershed

Undirected graphs

Fita Sanmartín et al. (2019)

Forests

Directed Probabilistic Watershed

Directed graphs

In-forests rooted at the seeds

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Probabilistic Watershed

Undirected graphs

Fita Sanmartín et al. (2019)

Directed Probabilistic Watershed

Directed graphs

Forests \Longrightarrow

In-forests rooted at the seeds

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Directed Graph

- Directed Graph
- Seeds (labeled nodes)

- Directed Graph
- Seeds (labeled nodes)
- Edge-Costs, c_e (\sim affinity between nodes)

- Directed Graph
- Seeds (labeled nodes)
- Edge-Costs, c_e (\sim affinity between nodes)
- Classification

Definition in-tree & in-forest

(c) In-forest rooted at s_1 and s_2

Definition in-tree & in-forest

(c) In-forest rooted at s_1 and s_2

Definition in-tree & in-forest

(c) In-forest rooted at s_1 and s_2

Main question

What is the probability of sampling an in-forest such that a node of interest, *q*, belongs to a tree rooted at a certain seed?

Main question

What is the probability of sampling an in-forest such that a node of interest, q, belongs to a tree rooted at a certain seed?

Directed Probabilistic Watershed Probabilities

Enrique Fita Sanmartín

Directed Probabilistic Watershed Probabilities

Gibbs distribution

Gibbs distribution

$$\Pr(F) \propto w(F) := \exp\left(-\mu \underbrace{c(F)}_{e \in F}\right)$$

Directed Probabilistic Watershed Probabilities

$$Pr(q \sim s_2) = \frac{W(q)}{W(q)} + W(q)$$

Directed Probabilistic Watershed Probabilities

Computation Probabilities Directed Probabilistic Watershed

Number in-forests increases exponentially with the number of nodes and edges

Naive approach infeasible

An elementary proof of a matrix tree theorem for directed graphs, Leenheer (2019)

Computation Probabilities Directed Probabilistic Watershed

Number in-forests increases **exponentially** with the number of nodes and edges

 \Rightarrow Naive approach infeasible

Directed Matrix Tree Theorem

 \Rightarrow Effic

Efficient computation probabilities

Linear System

$$L_U^{\top} x_U^{s_2} = -[B_1^{\top}]_{s_2}$$

An elementary proof of a matrix tree theorem for directed graphs, Leenheer (2019)

Comparison linear systems

Probabilistic Watershed

$$L_U x_U^{s_2} = -[B_1^{\top}]_{s_2}$$

Directed Probabilistic Watershed

$$L_U^{\top} x_U^{s_2} = -[B_1^{\top}]_{s_2}$$

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Equivalence Random Walker

Probabilistic Watershed

Random Walker (Seed absorption probabibility) Grady (2006)

~

Probabilisic Watershed
Fita (2019)

Directed Probabilistic Watershed

Directed Random Walker (Seed absorption probabibility)

 \sim

Directed Probabilisic Watershed

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)
Random walks for image segmentation, Grady (2006)

Minimum entropy case

Gibbs distribution

$$\Pr(F) \propto \exp\left(-\mu c(F)\right) = \exp\left(-\mu \sum_{e \in F} c_e\right)$$

$$\mu \to \infty \Longrightarrow$$

Minimum entropy

Count minimum cost in-forests (in-mSF)

(a) $\mu = 1$

(b) $\mu = 2$

(c) $\mu = 20$

Minimum entropy case

Probabilistic Watershed

Power Watershed

Couprie et al. (2011)

 \sim

Minimum entropy Probabilisic Watershed Fita (2019)

Directed Probabilistic Watershed

Directed Power Watershed

~

Minimum entropy
Directed
Probabilisic Watershed

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Power Watershed: A Unifying Graph-Based Optimization Framework, Couprie at al. (2011)

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Random walks for image segmentation, Grady (2006)

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)

Random walks for image segmentation, Grady (2006)

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning. Fita Sanmartín et al. (2019) Random walks for image segmentation, Grady (2006)

Probabilistic Watershed: Sampling all spanning forests for seeded segmentation and semi-supervised learning, Fita Sanmartín et al. (2019)
Random walks for image segmentation, Grady (2006)
Power Watershed: A Unifving Grabh-Based Optimization Framework. Couprie at al. (2011)

Thank you for your attention