Conflict-Averse Gradient Descent
for Multitask Learning
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Multitask Learning (MTL)

Definition of MTL.:
Learning a single model that can tackle multiple different tasks.

Why MTL:
- Necessity: An ideal intelligent agent should possess diverse skills.
- Better Efficiency: MTL methods learn more efficiently with an overall smaller model
compared to learning separate models.
- Improved Performance: It has been shown that MTL can improve the quality of
representation learning across different tasks [1].

[1] Swersky, Kevin, Jasper Snoek, and Ryan Prescott Adams. "Multi-task bayesian optimization." (2013).
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Formal Definition

Definition of MTL.:
Learning a single model that can tackle multiple different tasks.

Formally, assume we have K > 2 tasks, each task has its own loss function L;(6)with a
shared set of parameters 6. The objective is to optimize:

K
0™ —argmm{Lo EZ }

0cR™
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Formal Definition

Definition of MTL.:
Learning a single model that can tackle multiple different tasks.

Formally, assume we have K > 2 tasks, each task has its own loss function L;(6)with a
shared set of parameters 0. The objective is to optimize:

K
1
0* = argmin< Lo(0) £ — L;(0) ;.
min { Lo(0) 2 13140

Remark: we implicitly assume the preference over tasks are expressed in individual losses L;(6) so
that the goal is to search for an optimum of the average loss.
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Optimization Challenge: Conflicting Gradients

Directly optimizing the average loss Ly(#) can be challenging.

Denote g; = VyL;(0) the task gradient and go = VLo () the average task gradient. Then,
conflicting gradients means that 3¢, (g;,90) < 0.

In other words, updating the average loss can sacrifice the performance of an individual
task. This could lead to failure of optimization!
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Denote g; = VyL;(0) the task gradient and go = VLo () the average task gradient. Then,
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Pareto Concepts

Unlike single task learning where any two parameter vectors 6;and 6,can be ordered in
the sense that either L(6,) < L(#;) or L(6;) < L(6;), MTL can have two parameter vectors
where one performs better on task i and the other performs better on task j.




Pareto Concepts

Unlike single task learning where any two parameter vectors #;and 6,can be ordered in
the sense that either L(6;) < L(#;) or L(6;) < L(6,). MTL can have two parameter vectors
where one performs better on task i and the other performs better on task j.

To this end, we need the concept of pareto optimality:

Pareto Optimality and Pareto Set (Informal)
A parameter is Pareto-optimal if no other parameters perform uniformly better than it.

The set of all Pareto-optimal points is the Pareto set.




Prior Attempts and Convergence

Several methods are proposed to mitigate the challenge in MTL optimization. In this work, we
mainly focus on gradient manipulation methods that calculate a new update using task gradients
(other methods include novel multi-task network design [1]). Representatives are:

1. Multiple-gradient descent algorithm (MGDA) [2]: directly optimize towards the pareto set.

2. Dynamically reweighting each objective [3].

3. Projecting Gradient [4]: project each gradient to the normal plane of others.

1] Liu, Shikun, Edward Johns, and Andrew J. Davison. "End-to-end multi-task learning with attention." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

2] Sener, Ozan, and Vladlen Koltun. "Multi-task learning as multi-objective optimization." Conference on Neural Information Processing Systems. 2018.

3] Chen, Zhao, et al. "Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks." International Conference on Machine Learning. PMLR, 2018.

4] Yu, Tianhe, et al. "Gradient surgery for multi-task learning." Conference on Neural Information Processing Systems. 2020.
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Prior Attempts and Convergence

Several methods are proposed to mitigate the challenge in MTL optimization. In this work, we
mainly focus on gradient manipulation methods that calculate a new update using task gradients
(other methods include novel multi-task network design [1]). Representatives are:

1. Multiple-gradient descent algorithm (MGDA) [2]: directly optimize towards the pareto set.

2. Dynamically reweighting each objective [3].

3. Projecting Gradient [4]: project each gradient to the normal plane of others.

Remark: while all these methods mitigate the challenge in MTL optimization, they manipulate the
gradient without respecting the original objective. Therefore, they either have no convergence
guarantee or can converge to any point on the Pareto-set in principle.

1] Liu, Shikun, Edward Johns, and Andrew J. Davison. "End-to-end multi-task learning with attention." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2019.

2] Sener, Ozan, and Vladlen Koltun. "Multi-task learning as multi-objective optimization." Conference on Neural Information Processing Systems. 2018.

3] Chen, Zhao, et al. "Gradnorm: Gradient normalization for adaptive loss balancing in deep multitask networks." International Conference on Machine Learning. PMLR, 2018.

4] Yu, Tianhe, et al. "Gradient surgery for multi-task learning." Conference on Neural Information Processing Systems. 2020.
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Conflict-Averse Gradient Descent (CAGrad)
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Assume we update 9 by ' = § — ad, Where «is the step size and d the update vector.

In general, we want to not only decrease the average loss, but also every individual loss.
Therefore, we consider the worst relative decrease over individual losses:

R(6,d) = max { 1 (L;(0 — ad) — Lz(H))} N — rrliiIl(gi, d)

1 (87
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Assume we update 9 by ' = § — ad, Where «is the step size and d the update vector.

In general, we want to not only decrease the average loss, but also every individual loss.
Therefore, we consider the worst relative decrease over individual losses:

R(6,d) = max { 1 (L;(0 — ad) — Lz(H))} N — rrliiIl(gi, d)

1 (87

The objective of CAGrad is then:

in(gi,d) st |d—go| <
52%’ém}n<g“d> s.t.  |ld — gol| < cllgoll
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Conflict-Averse Gradient Descent (CAGrad)

Assume we update 9 by ' = § — ad, Where «is the step size and d the update vector.

In general, we want to not only decrease the average loss, but also every individual loss.
Therefore, we consider the worst relative decrease over individual losses:

R(6,d) = max { 1 (L;(0 — ad) — Lz(H))} N — rrliiIl(gi, d)

1 (87

The ObjeCtive Of CAG rad iS then: still close to the average gradient,

The worst improvement over tasks useful for convergence

in(gi, d)| st |[d—gol <
igﬁ)nimim@“@ s.t. ||ld — gol| < cllgoll




Conflict-Averse Gradient Descent (CAGrad)

In practice, we solve the dual objective for efficiency (the dual objective only involves K
parameters where K is the number of tasks).

Algorithm 1 Conflict-averse Gradient Descent (CAGrad) for Multi-task Learning

Input: Initial model parameter vector 6, differentiable loss functions {L; } X |, a constant ¢ € [0, 1)
and learning rate o € R™.
repeat

At the ¢-th optimization step, define go = Zfil VLi(0:—1) and ¢ = ¢ ||go||”.

Solve

K
: i
irél)glvF(’w) = g} g0 + V¢ 9w, Where g, = % ;inLi(Gt_l).

ot /2
Update Ht = 9,3_1 — (g() + mgw) :
until convergence




Conflict-Averse Gradient Descent (CAGrad)

GD MGDA PCGrad CAGrad (ours)

max min g, d d= (9112 +9211)/2 max min g, d
d= (91 +92)/2 @ ¢

i P
s.t. ||d|| <1 where g;1; = g; — ffg gljl 9 s.t. |ld = goll < cllgol
J




Conflict-Averse Gradient Descent (CAGrad)

GD MGDA PCGrad CAGrad (ours)
max min g; d d= (9112 +9211)/2 max min g;' d
1 T ‘ 1
st. ] <1 where g;,; = g; — f(g _gﬁ 9; s.t.]|d — goll <[c]lgoll
J

controls the radius
of the ball

d=(91+92)/2




Visualization of Optimization
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Convergence of CAGrad

Convergence of CAGrad (Informal): With common differentiable and Lipschitz
assumptions, we have:

1. If 0 <c<1,then CAGrad converges to an optimum of the average loss Ly(0).

2. If ¢>1, then CAGrad converges to a Pareto-optimal point.
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Connection to GD and MGDA

In fact, CAGrad is closely connected to Gradient Descent (GD) and Multiple-Gradient

Descent Algorithm (MGDA). Specifically:
1. When ¢ = (0, CAGrad recovers GD.

2. When ¢ — oo, CAGrad recovers MGDA.

\% M
g1 g1

GD MGDA
max min g; d
d=(g1+92)/2 e
st. [|d]| <1

7
/ ,
‘ / '
A\ 3 1/ 92 M
D14
g1 g1

PCGrad CAGrad (ours)
d=(g112 +g211)/2 max min g/ d
3

s.t. [|d = goll < cllgoll

.
9; 95
where g;1; = g; — mgj
j
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Experiment (Toy Example)
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Figure 3: The left four plots are 5 runs of each algorithms from 5 different initial parameter vectors,
where trajectories are colored from red to yellow. The right two plots are CAGrad’s results with a
varying ¢ € {0,0.2,0.5,0.8,10}.




Experiment (MultiMNIST)
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Figure 4. The average and individual training losses on the Fashion-and-MNIST benchmark by
running GD, MGDA, PCGrad and CAGrad with different ¢ values. GD gets stuck at the steep

valley (the area with a cloud of dots), which other methods can pass. MGDA and PCGrad converge
randomly on the Pareto set.




Experiment (NYU-v2)

NYU-v2 consists of 3 vision tasks: a) 13-class semantic segmentation, b) depth
prediction, and c) surface normal prediction.

Segmentation Depth Surface Normal
#P. Method (Higher Better) (Lower Better) ?ﬂ%‘}:e?]i; ::g;)e (I-Ii‘;/l'igzig é;er) Am% |
mloU Pix Acc AbsErr RelErr Mean Median 11.25 22.5 30
3 Independent 38.30 63.76 0.6754 0.2780 25.01 1921 30.14 5720 69.15
~3 Cross-Stitch [21] 37.42 63.51 0.5487 0.2188 *28.85 *24.52 *2275 *46.58 *59.56 6.96
1.77 MTAN [3] 39.29 6533 *0.5493 0.2263 *28.15 *23.96 *22.09 *47.50 *61.08 5.59
1.77 MGDA [26] *30.47  *59.90 *0.6070 0.2555 24.88 1945 2918 56.88  69.36 1.38

1.77 PCGrad [37] (Ir=1e-4) 38.06 *64.64 05550 02325 *27.41 *2280 2386 *49.83 *63.14 3.97
1.77 PCGrad [37] (Ir=2e-4)  37.70 63.40 *0.5871 *0.2482 *28.18 *24.09 *21.94 *47.20 *60.87 8.12
1.77 GradDrop 39.39 65.12 *0.5455  0.2279 *27.48 *2296 2338 *49.44 *62.87 3.58
1.77 CAGrad (c=0.6) 39.54 65.60 05340 0.2199 2587 2094 2588 53.78 67.00 -1.37

Table 1: Multi-task learning results on NYU-v2 dataset. # P denotes the relative model size compared
to the vanilla SegNet. Each experiment is repeated over 3 random seeds and the mean is reported.
The best average result among all multi-task methods is marked in bold. MGDA, PCGrad, GradDrop
and CAGrad are applied on the MTAN backbone. CAGrad has statistically significant improvement
over baselines methods with an *, tested with a p-value of 0.05.




Experiment (Multitask RL)

Test on the metaworld MTRL benchmark: metaworld-MT10 and metaworld-MT50, with
10 and 50 manipulation tasks.

Metaworld MT10 Metaworld MT50

1.tunon 2. sweep 3. basketball 4 sweep 5. turn off 6. push 7 pu|| lever8. turn dial |9. push with -

ot o hole __ucet o a6 nandmser  Method success success
(mean = stderr) (mean = stderr)
10. get i 1L_|pu!l‘ 123 assetmble 13. pL:|II 14. pick outs- d“:z:e’"b‘e 16. place  17. push h18(.ﬂ|pre§; &7 closs By Multl-task SAC [38] 0.49 +0.073 0.36 +0.013
~ IS e e Multi-task SAC + Task Encoder [38] 0.54 +0.047 0.40 £0.024
Multi-headed SAC [38] 0.61 +0.036 0.45 +0.064
19. 20.slide ~ 21. slifie 22.press  23.press = 24.pull " 25. soccer 26. retri_eve27. retrieve 48, Iockdoor PCGrad [37] 0.72 :|:0022 0'50 :|:0017
hammer late late side button wall handle handle plate side  plate - . .

Soft Modularization [36] 0.73 +0.043 0.50 +0.035
CAGrad (ours) 0.83 10.045 0.52 40.023
28.close” 25 press "30.each S\ S2 reach 3 ioers” 34push 35, puh " BB, 45 iockaoo  CAGrad-Fast (ours) 0.82 £0.039 0.50 £0.016
CARE [29] 0.84 +0.051 0.54 +0.031
37. press 38.pick & 39.pull "40.unplug 41.close = 42. open = 43.open = 44.close = 45. open 50. pick biﬂ One SAC agent per task (upper bound) 0.90 :|Z0.032 0.74 IIZ0.041

button place mug peg window  window door door drawer

Metaworld [Yu et al., 2020]
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