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Adversarial Examples
Threats to machine learning in real-world scenario

• In a normal scenario, a well-trained 
machine learning model could carry 
out specified task and perform 
greatly.


• However, if no explicit regularization 
or procedure was taken to enhance 
the robustness, a model could easily 
be susceptible to adversarial attacks.

Perspective from the eye of Machine Learning Models 
(Credits: https://learn.alwaysai.co/detect-people-using-alwaysai)

https://learn.alwaysai.co/detect-people-using-alwaysai


Adversarial Examples Continued
Existence and Abundance of Adversarial Examples

• Mechanisms had been 
proposed to search for such 
examples


• Adversarial Attack with PGD 
(Madry et al.)


• FGSM (Goodfellow et al.)


• Real-World Examples have as 
well been found

Real-World Adversarial Examples 
(Credits: Xu et al. Adversarial T-shirt! Evading Person Detectors in A Physical World)



Adversarial Perturbations 
Adversarial Devastations on Weights

• Model also suffer from the perils of adversarial weight perturbations 
(Liu et al., 2017 / Zhao et al., 2019)


• Adversarial Weight Perturbation presents various interest of studies


• Via perturbations, one could better understand the loss landscape and the 
relative generalization behavior 
(Cheney et al., 2017 / Widrow & Lehr, 1990)


• Robustness to weight quantization is critical to reducing memory size of 
low-precision training and inferencing 
(Stutz et al., 2020 / Hubara et al., 2017)



Inspiration and Proposed Solution

• While input perturbation has been explicitly studied (Yin, D., 2019), there are 
few researches focus on exploring relationship between both the 
robustness and the generalization of the model against weight perturbation.


• While adversarial training is useful against input perturbation, straight-
forward extension is not meaningful in the context of weight perturbation as 
the minimization and maximization are both conducted in the parameter 
space


• This paper investigates the worst-case error of a given neural network 
under weight perturbation, and proposes the surrogate loss for robust 
weight training and derives its Rademacher Complexity for generalization 
studies



Brief Introduction of Main Theorems

• Instead of providing direct proofs and presentation of theorems, here we 
would like to provide an overview on the implication and creation of these 
theorems.


• We will start by stating the pairwise margin bound, to the surrogate loss and 
the generalization bound against weight perturbation, till lastly we propose a 
theory-driven loss function against weight perturbation based on our 
observation.



Theory Results
Pairwise Margin Bound

• Firstly, we would like to measure the worst-case error in a feed-forward neural 
network under weight perturbation. Therefore, we choose the quantity of 
margin to express this certain bound provided in theorem 1


• To be more precise, the term pairwise margin stands for the subtracted 
quantity of two classes which can be easily applied to look for the 
differences between confidence in each class.


• The proof concept can be understand under the notion of layer-wise error 
propagation which are composed of the perturbation, preceding input 
magnitude, and posterior propagation via weight matrices.



Theory Results
Pairwise Margin Bound
• Here we present the general theorem along with the additional term definition 

for the better understanding of error propagation. 

Definition of Layer-wise Propagated Error 



Surrogate Loss against weight perturbation
• Secondly, in place of the adversarial training against weight perturbation, we 

derive an empirical surrogate loss which will be later used to analyze the 
generalization property of models against weight perturbation.



Generalization Gap under weight perturbation
• To proceed, we then turn to the focus of analyzing the generalization gap 

under weight perturbation via the previous surrogate loss and derive the 
following theorem.


• To recall, generalization gap measures the difference of model behavior in 
both testing and training time via the expected performance (loss). Therefore, 
it can be written in the form of 


• Testing Performance ≤ Training Performance + Generalization Gap



Generalization Gap under weight perturbation

• As one can see in the above theorem, by training against weight perturbation, 
one may encounter additional complexity term which will in turn widen the 
generalization gap where it could grow out of bound when not properly 
contained.



Theory-Driven Loss Function

• Lastly, based in tandem with the robustness and the generalization behavior 
analysis, we present the robust and generalizable loss function


• Specifically, we can decompose it into three terms. Standard loss stands for 
accuracy-improving term, robustness loss represents robust training and lastly  
the third term controls the overall generalization gap. 



Empirical Performance
• We provide two experiments upon validation (and more in appendices) with 

one being the validation of our finding in Theorem 4 and another one 
corresponds to the efficacy of out proposed loss function against weight 
perturbation.



Empirical Performance — Continued
• Here we also provide two additional experiments related to extension of this 

content with one being the comparison of different regularization technique 
and the efficacy of our loss function on convolutional models.



Difference Comparison
Difference between ours and related studies
• We here provide a brief table summarizing the difference between ours work 

on robustness against weight perturbation and other similar works.



Conclusion
Thanks for your listening!


