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Framework for Comparing Data Manifolds

a=0.2

P ~ Pdat a

a=0.6

Q ~ Qmodel

a=0.8

We develop a framework for comparing
data manifolds, aimed, in particular,

~. towards the evaluation of deep

generative models. We describe a novel
tool, Cross-Barcode(P,Q), that, given a
pair of distributions in a high-dimensional
space, tracks multi-scale topology spacial
discrepancies between manifolds on
which the distributions are concentrated.
It is one of the first TDA-based practical
methodologies that can be applied
universally to datasets of different sizes
and dimensions.
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Comparing Data Manifolds

a=0.2 a=0.6 a=0.8

IDEA: compare manifolds
Mdata’ Mmodel

A | \\ via calculating topological features of
AN - \ (Mdata U Mmodel)/ Mmodel
Figure 1: Edges(red) connecting and (Mdata L Mmodel)/ M gata

P—points(red) with  ()—points(blue),
and also P—points between them, are added _ _
for three thresholds: o = 0.2,0.4, 0.6 in the setting of manifolds represented

P~ 7Ddata Q~ Qmodel by point clouds
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Comparing Data Manifolds

a=0.2 a=0.6 a=0.8
”;\ | A To calculate topological features of
K\; 2 ‘ \x =8 (Mdata U Mmodel)/ Mmodel in the setting

Vs \\ . of manifolds represented by point clouds

7 o we replace (Mdata U Mmodel) by simplicial
N \\ approximations at varying scale a>0

by picking simplexes with vertices in samples

Figure I: Edges(red) connecting P UQ with edges not exceeding a, for all a>0
P—points(red) with  ()—points(blue),
and also P—points between them, are added

for three thresholds: v — 0.2. 0.4. 0.6 and then for the calculation of topological
P~Pyat. e features, as the counterpart of taking quotient
data Q= Cmodel by M, ,od01, We set the distances within
() -cloud to zero
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Comparing Data Manifolds

a=0.2 a=0.6 a=0.8
N, Our method measures the differences in the simpli-
‘~\ cial approximation of the two manifolds, represented
by samples P and (), by constructing sets of sim-
plices, describing discrepancies between the two man-
ifolds. To construct these sets of simplices we take
the edges connecting P—points with ()J—points, and
also P—points between them, ordered by their length,
and start adding these edges one by one, beginning
from the smallest edge and gradually increasing the
threshold, see Figure 1.

Figure 1: Edges(red) connecting
P—points(red) with  ()—points(blue),
and also P—points between them, are added

for three thresholds: o = 0.2,0.4, 0.6
P~ 7)da,ta Q) ~ Qmodel A <b

1-simplex 2-simplex 3-simplex
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Comparing Data Manifolds

a=0.2 a=0.6 a=0.8
.‘ ,\_
| :I\h
N
Figure 1: Edges(red) connecting
P—points(red) with  ()—points(blue),

and also P—points between them, are added
for three thresholds: o = 0.2,0.4, 0.6

P"‘ Pda,ta Q"‘ Qmodel

We track in this process the appearance of nontrivial
k-cycles, i.e. collections of k-simplexes formed by
some P- and Q-points, such that the simplexes’
boundaries cancel each other. Any collection with
boundary in Q can be completed to a cycle since all

simplexes formed only by Q-points have been added
at zero scale.

We track the scales at which such nontrivial cycles
appear and disappear.

The longer the lifespan of such topological feature
across the change of threshold the bigger the
described by this feature discrepancy between the
two manifolds

11(,{
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Comparing Data Manifolds

a=0.2 a=0.6 a=0.8

Figure 1: Edges(red) connecting
P—points(red) with  ()—points(blue),
and also P—points between them, are added
for three thresholds: o = 0.2,0.4, 0.6

P"‘ Pda,ta Q"‘ Qmodel

The process of adding longer edges can be visually
assimilated to the building of a "spider's web" that

tries to bring the cloud of red points closer to the
cloud of blue points.
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Cross-Barcode

Cross-barcode(P,Q) is calculated for two point clouds: P and Q.
All the pairwise distances within Q are set to zero.

To define Cross-Barcode(P, Q) we construct first the following filtered simplicial complex. Let
(I'pug, m(pPuQ) /@) be the weighted graph with the distance-like weights on edges defined as the
complete graph on the union of point clouds P U () with the distance matrix given by the pairwise
distance in R for the pairs of points (p;, p;) or (pi,q;) and with all pairwise distances within
the cloud @ that we set to zero. Our filtered simplicial complex is the Vietoris-Rips complex of
(I'Pu@. m(PUQ)/Q)-

The Vietoris-Rips complex R, (I', m) is the abstract simplicial complex with simplices that corre-
spond to the non-empty subsets of vertices of I' whose pairwise distances are less than «v as measured

by m. Increasing parameter o adds more simplices and this gives a nested family of collections of
simplices know as filtered simplicial complex.

Definition The Cross-Barcode;(P, Q) is the set of intervals recording the “appearance" and
“disappearance"” scales of :—dimensional topological features in the filtered simplicial complex
Ra (FPUQ: m(PUQ)/Q)
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Cross-Barcode

Cross-barcode(P,Q) is calculated for two point clouds: P and Q.
All the pairwise distances within Q are set to zero.

radius = 0.5 ~ radius = 0.9 radius = 1.5 radius = 1.8 ' Cross-Barcodes
20/P o o Q 20 o o 2.0 PP 2.0 PP 6
15/ @ ® 5 @ ® 5 @ ®* s @ ot n
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Figure 11: The process of adding the simplices between the P—cloud(red) and ()—cloud(blue) and
within the P—cloud. Here we show the consecutive adding of edges together with simultaneous
adding of triangles. All the edges and simplices within ()—cloud are assumed added at o« = 0 and
are not shown here for perception’s ease. Notice the 1—cycle born between o« = 0.5 and 0.9, it
corresponds to the green segment in the shown Cross-Barcode
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Cross-Barcode: the Algorithm

Algorithm 1 Cross-Barcode; (P, Q)

Input: m|P, P], m[P, Q] : matrices of pairwise
distances within point cloud P, and between
point clouds P and @)

Require: VR(M): function computing filtered
complex from pairwise distances matrix M
Require: B(C,7): function computing persis-

tence intervals of filtered complex C' in dimen-

"bg < number of columns in matrix m[P, Q]
m[Q., Q] + zeroes(bg. bo)
m[P, P m|P, Q]

M ( m[P,Q] m[Q, Q])

Cross-Barcode; < B(VR(M ), 1)
Return: list of intervals Cross-Barcode; (P, Q)
representing "births" and "deaths" of topologi-
cal discrepancies

J
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Basic Properties of Cross-Barcode

1. Cross-Barcode(P, P) = @
2. Cross-Barcode(P, @) = Barcode(P)

3. Cross-Barcode(P, Q) is not symmetric
4. ||Cross-Barcode(P, Q)||g is bounded from above by the Hausdorff distance

between P and Q, where || . || is the bottleneck distance.



Skoltech

Manifold Topology Divergence (MTop-Div)

MTop-Div(P, Q) by definition equals the sum of lengths of segments in Cross-
Barcode, (P, Q)

Proposition. MTop-Div(P, Q) equals the Earth-Mover’s Distance between Relative
Living Time histogram for the Cross-Barcode, (P, Q) and the histogram of the empty

barcode, multiplied by the parameter a, ., from the definition of RLT.

Relative Living Times is a discrete distribution RLT'(k) over non-negative integers k €
{0,1,...,4+0oc}. For a given au,q,; > 0, RLT (k) is a fraction of “time”, that is, parts of hori-
zontal axis 7 € [0, a2, such that exactly k segments [b;, d;| include 7.
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MTop-Divergence: the Algorithm

Algorithm 2 MTop-Divergence(P, Q), see sec-
tion 2.6 for details, default suggested values:
bp = 1000, bo = 10000, n = 100

Input: Xp, Xo: Np x D, No X D arrays rep-
resenting datasets
for j = 1tondo
P; < random choice(Xp,bp)
(); < random choice(X g,bg)
B; < list of intervals Cross-
Barcode; (P;, ;) calculated by Algorithm1
mtd; < sum of lengths of all intervals in
B;
end for
MTop-Divergence(P, Q) < mean(mtd)
Return: number MTop-Divergence(P, Q) rep-
resenting discrepancy between the distributions

P,Q
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Evaluation of Generative models. Methods:

We have compared the MTop-Div against 7 established evaluation methods: FID, discriminative score,
MMD, JSD, 1-coverage, IMD and Geometry score and found that MTop-Div outperforms many. of them
and captures well subtle differences in data manifolds.

For images, the Fréchet Inception Distance (FID) is a distance between two multivariate Gaussians.
These Gaussians approximate the features of generated and true data extracted from the last hidden
layer of the pretrained Inception network. FID is the most popular GAN evaluation measure. However,
FID is limited only to 2D images since it relies on pre-trained on ImageNet " Inception” network. FID
unrealistically approximates point clouds by Gaussians in embedding space. Surprisingly, FID can't be
applied to compare adversarial and non-adversarial generative models since it is overly pessimistic to
the latter ones.

The Geometry Score (GScore) is the L2-distance between mean Relative Living Times (RLT) of
topological features calculated for the model distribution and the true data distribution. The GScore is
domain agnostic, does not involve auxiliary pretrained networks and is not limited to 2D images.
However, GScore is not sensitive even to some simple transformations - like constant shift, dilation, or
8 reflection. The barcodes in GScore are calculated approximately, based only on the approximate
* witness complexes on 64 landmark points sampled from each distribution. That's why the procedure is
£ stochastic and should be repeated several thousand times for averaging. Thus, the calculation of
¥ GScore can be prohibitively long for large datasets.



Experiments. Pairs of rings.
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Figure 2: MTop-Div and HO max compared with GScore, for two ring clouds of 1000 points, as
function of d =distance between ring centers, the Cross-Barcode, (P, ()) is shown at d = 0.5
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Experiments. ‘5’s vs. flipped ‘5’s.

Geometry Score = 0.0
MTop-Div = 6154.0

Figure 4: Two point clouds:*5”s from MNIST vs. vertically
flipped “5”’s from MNIST (resembling rather “2”’s). The
two clouds are indistinguishable for Geometry Score, while
the MTop-Divergence is sensitive to such flip as it depends
on the positions of clouds with respect to each other.



Experiments. Modifications of CIFAR10.

Mode drop Mode invention Intra-mode collapse Random rectangle erasure Gaussian noise

10 10 500 10 40 10 35
= (Geometry Scorg 0.0 = Geometry Score’ ;5 = Geometry.5core = Geometry Score Geometry Score
8 MTop-Div (right) 8 MTop-Div (right) 400 MTop-Biv (right) 30 8 MTop-Div (right) 35 8 MTop-Div (right) |30
w 95 [ [ - ]
<] S o 25
A 6 b &3 6 2
z 90 3 2 z P
@ S o o 206
E 4 E € E 4 =
[] 85 [*} o]
L @ w
(6] (6] 6] 15
2 : 2
80 -/\/ 10
0 0 -
0 1 2 3 4 0 1 2 3 4 1 0.1 0.01 0.001 0 0.01 0.05 0.25 0 001 0.02 004 008
num. dropped num. invented diversity per mode erased part noise std. deviation

Figure 5: Experiment with modifications of CIFAR10. The disturbance level rises from zero to a
maximum. Ideally, the quality score should monotonically increase with the disturbance level.

The average Kendall-tau rank correlation between MTop-Div(D,M) and disturbance level is
0.89, while for Geometry Score the rank correlation is only 0.36. FID performs well on this
benchmark, not shown for ease of perception

Skoltech

17



Skoltech

Experiments. GAN model selection.

Dataset FID MTop-Div(D,M)
WGAN WGAN-GP WGAN WGAN-GP

CIFARIO 154.6 399.2 353.1 1637.4

SVHN 101.6 154.7 332.0 963.2

MNIST 31.8 22.0 2042.8 1526.1

FashionMNIST 52.9 35.1 919.6 660.4

Table 1: MTop-Div is consistent with FID for model selection of
GAN’s trained on various datasets.

18
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Experiments. StyleGAN, StyleGAN2.
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Comparison of two quality measures: FID vs. MTop-Div
on StyleGAN, StyleGAN2 trained of FFHQ with different
truncation levels.

MTop-Div is monotonically increasing in good correlation
with FID.

FFHQ is the largest dataset in our experiments, number
of samples = 2*104, D=107

Calculation of MTop-Div took 30 sec.

Calculation of Geometry Score didn'’t finish in a
reasonable time.
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Experiments. 3D GAN.
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Training process of GAN applied to 3D shapes.
Normalized quality measures MMD, JSD, 1-
Coverage, MTop-Div vs. epoch. Lower is better.

MTop-Div is more sensitive than standard
quality measures.

PCA projection of real objects (red) and
generated objects (green). Vertical red line
(epoch 50) depicts the moment, when the
manifold of generated objects “explodes” and
becomes much more diverse.
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Experiments. TimeGAN.
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Training dynamics of TimeGAN applied to
market stock data. Discriminative score vs.
epoch, MTop-Div vs. epoch. Lower is better.

MTop-Div agrees with discriminative score.

PCA projection of real time-series (red) and
generated time-series (green). Vertical red
line (epoch 2000) depicts the moment when
manifolds of real and generated objects
become close.
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Experiments. Chest X-ray data.

112x112x3
2 %
B g N ——Real / Fake
«©
C (Class) Xrear (data) > E I N loag
@ ® x & c=0,1
> | x > 5 K| | [ (Class)
8 2 8
/ \ Discriminator
»Embedding Q
s | |15 N g B
8 bl (B Lyl | & | & X | Keake
e U LENT 6
2 B
7X7x1024 3 K e ® & 112x112x3
Generator

FIGURE 2. CovidGAN complete Architecture with generator and discriminator.

CovidGAN generates images to augment chest X-ray dataset for COVID diagnosis.

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., & Pinheiro, P. R. (2020). CovidGAN: data augmentation using

auxiliary classifier gan for improved covid-19 detection. leee Access, 8, 91916-91923. >
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Experiments. Chest X-ray data. |

P y AL RE
Training process of CovidGAN applied
to chest X-ray data. Normalized quality

measures FID, MTop-Div, Disc. score
vS. epoch. Lower is better.

MTop-Div agrees with standard
measures.

PCA projections of real objects (red)
and generated objects (green).
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Dashed horizontal lines depict comparison of real
COVID-positive and COVID-neg. chest X-rays.
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Experiments. Chest X-ray data.

Skoltech

FID MTop-Div
COVID- COVID-negative COVID- COVID-negative
positive real positive - real
real real
1 !
COVID-
positive
\ % generated
COVID-
positive
generated

Counterintuitively, for FID real COVID-positive images are closer to real
COVID-negative ones than to generated COVID-positive images.

Probably because FID is overly sensitive to textures.
Evaluation by MTop-Div is consistent
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Conclusions

1. We introduced a new tool: Cross-Barcode(P, Q). For a pair of point clouds P
and Q, the Cross-Barcode(P, Q) records the differences in multiscale topology
between two manifolds approximated by the point clouds;

2. We proposed a new measure for comparing two data manifolds approximated
by point clouds: Manifold Topology Divergence (MTop-Div);

3. We applied the MTop-Div to evaluate performance of GANs in various
domains: 2D images, 3D shapes, time-series. We show that the MTop-Div
correlates well with domain-specific measures and can be used for model
selection. Also it provides insights about evolution of generated data manifold
during training;
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Conclusions

4. We have compared the MTop-Div against 6 established evaluation methods:
FID, discriminative score, MMD, JSD, 1-coverage, and Geometry score and
found that MTop-Div is able to capture subtle differences in data geometry;

5. We have essentially overcame the known TDA scalability issues and in
particular have carried out the MTop-Div calculations on most recent datasets
such as FFHQ, with dimensions D up to 107
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Thank you for your attention!




