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Drug candidates

In a sequential clinical trial, adaptively allocate subjects to 
minimize the number of trials required to:

2. Make sure we don’t erroneously believe ineffective drug 
candidates are effective (make false discoveries).

1. Find most of the drug candidates with positive effect (true 
discoveries)

Subjects



The multiple testing problem

We want to control the frequency of making “false discoveries”.

Procedure outputs a discovery set S ⊆ {1,…, K}

FDP :=
|N ∩ S |
|S | ∨ 1

FDR := 𝔼[FDP]

N ⊆ {1,…, K}The set of null hypotheses is
e.g. drugs candidates that actually have no positive effect

δ ∈ (0,1)FDR is required to be controlled under a fixed constant

H1, H2, …, HK
e.g. “this drug candidate has 
no positive effect.”K hypotheses we wish to test



The bandit approach to multiple testing

At each time step   t  select a single arm     It  and sample XIt,t

  -th arm is associated with the hypothesis (drug)k Hk

The multi-armed bandit models the adaptive allocation of new 
subjects to one of the treatments.

1 2 It K
… …

When we stop sampling, produce S that satisfies: FDR ≤ δ

t



Theorem (Benjamini and Hochberg 1995, Benjamini and Yekutieli 2001)

No restrictions on              when k ∉ N(pk,t)t∈ℕ

Prior work: p-values (+sequential analog: p-processes)

(BH procedure at level    ) Output the largest set satisfying:

max
k∈S

pk,t ≤
α |S |

K

α

FDR ≤ α p1,t, …, pK,t are independent

FDR ≤ α log(1/α) are dependent only through samplingp1,t, …, pK,t

FDR ≲ α log(K) are arbitrarily dependent p1,t, …, pK,t

 a p-process for each hypothesis (pk,t)t∈ℕ
Pr(∃t ∈ ℕ : pk,t ≤ s) ≤ s for all s ∈ (0,1) when k ∈ N

k

(Jamieson and Jain 2018, Su 2018)

Uses rewards sampled from arm    by time    to construct:k t



Limitations of p-processes

Using p-processes requires correction by an extra log K factor
when there is arbitrary dependence between  p1,t, p2,t, …, pK,t

Dependence can arise from:


- Arbitrary dependence among rewards                               
(combinatorial bandits)


- Hypotheses that test a property of multiple arms (e.g. is the 
covariance of the rewards of two arms 0?)


- Using previous data that may have come from dependent 
sources.

X1,t, X2,t, …, XK,t

log(1/α)Adaptivity in the sampling algorithm (               blow up)




E-processes: an alternative to p-processes

E-processes are the sequential analog of e-values.

Recently developed alternative to p-values and p-processes, and are 
fundamentally connected to martingales. (Grünwald et al. 2020, Shafer 2020, 
Ramdas et al. 2020)

ek,τ(ek,t)t∈ℕ is an e-process if is an e-value τfor all stopping times

ke1, e2, …, eKLet be  e-values corresponding to H1, H2, …, HK

(random time that is a function of the 
already observed rewards)

and     is nonnegative 𝔼[ek] ≤ 1ek is an e-value if ek when k ∈ N



self-consistency at level     property:

E-values for multiple testing: e-BH
We make no assumptions on the e-values - they may be 
arbitrarily dependent

min
k∈S

ek ≥
K

α |S |
α

Theorem (Wang and Ramdas 2020)
FDR ≤ α for any self-consistent procedure on e-values. 

e-BH: outputs largest self-consistent set.

Fewer assumptions and applies to more procedures than BH

      is a p-value. Thus, e-BH is identical to applying BH on inverse of e-values.1/ek



E-processes in the bandit setting

 an e-process for each arm/hypothesis (ek,t)t∈ℕ k

(e-BH procedure at level    ) Output the largest set satisfying:δ

min
k∈S

ek ≥
k

δ |S |

When the algorithm stops sampling (at stopping time   )τ

e1,τ, e2,τ, …, eK,τ are e-values.

Output of e-BH guarantees FDR ≤ δ
regardless of dependence structure (e.g. adaptive 
sampling algorithm, dependence among rewards etc.) 
among the e-values

Uses rewards sampled from arm    by time    to constructk t



TPR := 𝔼[ |A ∩ S |
|A | ] A := {1,…, K}∖N

Sample complexity: # of samples required to output     with the above 
guarantees.

S

Under the same assumptions (i.e. independent and bounded rewards, single arm, 
etc.) and sampling strategy as the p-process algorithm (Jamieson and Jain 2018), 

Theorem:

Power and sample complexity

power constraint

When we stop sampling, produce S that satisfies: 
FDR ≤ δ, TPR ≥ 1 − δ

E-processes with e-BH achieve matching sample complexity bounds w/ p-
processes and BH (up to a constant).



Conclusion: a unified 
framework for FDR control

Any algorithm that outputs discoveries through e-BH has valid FDR 
control regardless of the underlying data distributions or hypotheses 
being tested.

Thus, e-processes and e-BH provide a framework for designing 
algorithms with valid FDR control in any situation, including:
• Dependent reward distributions


• Hypotheses involving multiple arms


• Multi-agent scenarios where agents want to combine collected data


• Structural constraints on the discovery set

Provably matches performance of best algorithm for basic single arm 
bandit case (Jamieson and Jain 2018)
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