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Subjects

M

In a sequential clinical trial, adaptively allocate subjects to
minimize the number of trials required to:

1. Find most of the drug candidates with positive effect (true
discoveries)

2. Make sure we don’t erroneously believe ineffective drug
candidates are effective (make false discoveries).
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Drug candidates




The multiple testing problem

e.g. “this drug candidate has

K hypotheses we wish to test H|, H,, ..., Hy o positive effect.”

The set of null hypotheses is N C {1,..., K}
\

e.g. drugs candidates that actually have no positive effect

Procedure outputs a discovery set S C {1,..., K}

We want to control the frequency of making “false discoveries”.

INN S|
FDP := FDR := E[FDP]
1IS|Vv1

FDR is required to be controlled under a fixed constant ¢ € (0,1)




The bandit approach to multiple testing

The multi-armed bandit models the adaptive allocation of new
subjects to one of the treatments. Af— <,

k-th arm is associated with the hypothesis (drug) H,

At each time step I select a single arm [, and sample let

M,

%, sz... o 0

When we stop sampling, produce S that satisfies: FDR < o



Prior work: p-values (+sequential analog: p-processes)

Uses rewards sampled from arm k by time f to construct:

a p-process (pk,t)teNfor each hypothesis &

Pr(dreN:p,,<s)<s foralls € (0,1) when k € N

No restrictions on (p; ),eyWhen k & N

_
(BH procedure at level o) Output the largest set satisfying:
max < a|S|
keS Pt = K

Theorem (Benjamini and Hochberg 1995, Benjamini and Yekutieli 2001)
FDR < a Pir --+» Pk are independent

FDR < alog(1/a) Pi1p ---» Pk are dependent only through sampling

FDR S alog(K) \Pl,ra .--»Pk are arbitrarily dependent
(Jamieson and Jain 2018, Su 2018)




Limitations of p-processes

Adaptivity in the sampling algorithm (log(1/«) blow up)

Using p-processes requires correction by an extra log K factor
when there is arbitrary dependence between p; ,p, 4, ---, Pk

Dependence can arise from:

- Arbitrary dependence among rewards X, ,, X, ,, ..., Xg,
(combinatorial bandits)

- Hypotheses that test a property of multiple arms (e.g. is the
covariance of the rewards of two arms 07?)

- Using previous data that may have come from dependent
sources.



E-processes: an alternative to p-processes

Let €y, €, ..., €x be k e-values corresponding to H, H,, ..., Hy

e, is an e-value iff E[¢] < 1and ¢, is nonnegativewhen k € N

E-processes are the sequential analog of e-values.
(€ ,),en I8 an e-process iff ¢, ; is an e-value for all stopping times 7

/

(random time that is a function of the
already observed rewards)

Recently developed alternative to p-values and p-processes, and are
fundamentally connected to martingales. (Grinwald et al. 2020, Shafer 2020,
Ramdas et al. 2020)



E-values for multiple testing: e-BH

We make no assumptions on the e-values - they may be
arbitrarily dependent

, K
self-consistency at level a property: mine;, >
keS alS|
Theorem (Wang and Ramdas 2020)
FDR < a for any self-consistent procedure on e-values.

Fewer assumptions and applies to more procedures than BH

e-BH: outputs largest self-consistent set.

1/e, is a p-value. Thus, e-BH is identical to applying BH on inverse of e-values.



E-processes in the bandit setting

Uses rewards sampled from arm k by time f to construct
an e-process (e, ), for each arm/hypothesis k

When the algorithm stops sampling (at stopping time 7)
(e-BH procedure at level 6 ) Output the largest set satisfying:

, k
min e, >
keS OS]

€1 1 € -+, €x . Are e-values.

Output of e-BH guarantees FDR < o

regardless of dependence structure (e.g. adaptive
sampling algorithm, dependence among rewards etc.)

among the e-values



Power and sample complexity

|ANS|
TPR :=E A A:={1,..,K)\N

When we stop sampling, produce S that satisfies:

FDR <,

™~ power constraint

Sample complexity: # of samples required to output S with the above
guarantees.

Theorem:

Under the same assumptions (i.e. independent and bounded rewards, single arm,
etc.) and sampling strategy as the p-process algorithm (Jamieson and Jain 2018),

E-processes with e-BH achieve matching sample complexity bounds w/ p-
processes and BH (up to a constant).




Conclusion: a unified
framework for FDR control

Any algorithm that outputs discoveries through e-BH has valid FDR
control regardless of the underlying data distributions or hypotheses
being tested.

Thus, e-processes and e-BH provide a framework for designing
algorithms with valid FDR control in any situation, including:

e Dependent reward distributions
e Hypotheses involving multiple arms
 Multi-agent scenarios where agents want to combine collected data

e Structural constraints on the discovery set

Provably matches performance of best algorithm for basic single arm
bandit case (Jamieson and Jain 2018)
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