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Motivation



Activations During Training
Activations are memoized layer outputs from the forward pass
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Lossy Activation Compression
Larger networks and larger batch sizes mean more activations
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The Accelerator Memory Wall
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Decreasing Activation Memory
Many orthogonal approaches
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Offloading
e.g. vDNN (M. Rhu, MICRO 2016)

Lossless Compression
e.g. CDMA (M. Rhu, HPCA 2018)

Scheduling
e.g. GIST (A Jain, ISCA 2018)

Recalculation
e.g. Sublinear Nets (T. Chen, ArXiv 2016)

Lossy Compression
e.g. ACTNN (J. Chen, ICML 2021)
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Backward Pass

Lossy Activation Compression
Discard some data, and compress
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Backward Pass

Lossy Activation Compression
Discard some data, and compress
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Drawbacks of Lossy Compression
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A Neural Network

Yes! Uhh, ok…

How to avoid explosions during training?

“This is a cat” “This is a cat”

High 
Compression

“This is a cat”

Low 
Compression



Tuning the Compression Rate is Hard
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Compression rate search cost. Each box 
indicates a different compression rate 

(1- to 16-bit fixpoint)



Key 
Contributions



Constrained Optimization for Lossy Activations

Goal: An efficient way to get compression rate from convergence
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𝑠𝑠. 𝑡𝑡.
Maximize Act.
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Convergenceargmax
Δ𝑋𝑋

𝐵𝐵(Δ𝑋𝑋)



Constrained Optimization for Lossy Activations
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𝑠𝑠. 𝑡𝑡.
Maximize Act.
Compression Persevering 

Convergenceargmax
Δ𝑋𝑋

𝐵𝐵(Δ𝑋𝑋)

Activation error
Some measure 
of compression

?



Key Insight: Allow Loss to Increase
Takes advantage of SGD convergence behaviour
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Bounding 
Convergence



Stochastic Gradient Descent Notation

18AC-GC, NeurIPS, Dec. 2021

ℒ 𝜃𝜃 = �
𝑛𝑛

𝑓𝑓𝑛𝑛 (𝜃𝜃)

Overall loss Loss of example 𝑛𝑛

Parameters Gradient w.r.t. 𝜃𝜃

Loss of a randomly 
selected training example

Loss is a finite sum
𝜃𝜃(𝑡𝑡+1) = 𝜃𝜃(𝑡𝑡) + 𝛼𝛼∇𝜃𝜃𝑓𝑓𝑛𝑛𝑡𝑡(𝜃𝜃)

Solve using S.G.D.



SGD Theoretical Convergence Rates
Many results on SGD convergence rates, we use:
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𝔼𝔼 ℒ 𝜃𝜃 𝑡𝑡 − ℒ 𝜃𝜃 ∗ ≤ 1 − 𝐶𝐶1𝛼𝛼 𝑡𝑡 ℒ 𝜃𝜃 0 − ℒ 𝜃𝜃 ∗ + 𝐶𝐶2𝛼𝛼𝑉𝑉2

𝐶𝐶1,𝐶𝐶2: Constants
𝑉𝑉2: Gradient Variance

[1] H Karimi, J Nutini, M Schmidt, “Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-Łojasiewicz Condition,” 
ECML PKDD 2016



Allowing Errors for Compression
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Gradient Variance
Compressed training can be viewed as SGD with increased variance
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From Karimi et. al:

Gradient “variance” is bounded:

𝔼𝔼 ∇𝜃𝜃𝑓𝑓𝑛𝑛𝑡𝑡 𝜃𝜃
2 ≤ 𝑉𝑉2

𝔼𝔼 �∇𝜃𝜃𝑓𝑓𝑛𝑛𝑡𝑡 𝜃𝜃
2 ≤ (1 + 𝑒𝑒2)𝑉𝑉2

Under compression:



Constrained Optimization for Lossy Activations
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𝑠𝑠. 𝑡𝑡.
Maximize Act.
Compression Persevering 

Convergenceargmax
Δ𝑋𝑋

𝐵𝐵(Δ𝑋𝑋)

Gradient variance 
is bounded
𝔼𝔼 �∇𝜃𝜃𝑓𝑓

2

≤ (1 + 𝑒𝑒2)𝑉𝑉2

𝔼𝔼 �∇𝜃𝜃𝑓𝑓𝑛𝑛𝑡𝑡 𝜃𝜃
2 ≤ (1 + 𝑒𝑒2)𝑉𝑉2



Error-Variance Relationship
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�∇𝜃𝜃𝑓𝑓 ≡ ∇𝜃𝜃𝑓𝑓 + Δ∇𝜃𝜃𝑓𝑓

Δ∇𝜃𝜃𝑓𝑓 2 ≤ 𝑒𝑒2𝑉𝑉2
Is satisfied by:

some math with
expectations and norms

𝔼𝔼 ∇𝜃𝜃𝑓𝑓 + Δ∇𝜃𝜃𝑓𝑓 2 ≤ (1 + 𝑒𝑒2)𝑉𝑉2
The constraint on variance:

Using an additive gradient error:



Constrained Optimization for Lossy Activations
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𝑠𝑠. 𝑡𝑡.
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Simplifying 
The Problem ≈



Bounding Function
Gradient error is related to activation error

Now we just need to calculate it for a layer, e.g., convolution…

Δ∇𝜃𝜃𝑓𝑓 2 = ∑𝑘𝑘,𝑐𝑐,𝑟𝑟,𝑠𝑠
𝐾𝐾,𝐶𝐶,𝑅𝑅,𝑆𝑆 ∑𝑛𝑛,ℎ,𝑤𝑤

𝑁𝑁,𝐻𝐻,𝑊𝑊Δ𝑥𝑥𝑛𝑛,𝑐𝑐,ℎ+𝑟𝑟,𝑤𝑤+𝑠𝑠
𝜕𝜕𝜕𝜕

𝜕𝜕𝑦𝑦𝑛𝑛𝑛𝑛𝑛𝑛𝑛

2
≤ 𝑒𝑒2𝑉𝑉2

which is not very useful… the solution is not closed-form. 

Where we find 𝐷𝐷(Δ𝑋𝑋) that is as close as 
possible to the error norm.Δ∇𝜃𝜃𝑓𝑓 2 ≤ 𝐷𝐷(Δ𝑋𝑋) ≤ 𝑒𝑒2𝑉𝑉2

Instead use:
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Constrained Optimization for Lossy Activations
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𝑠𝑠. 𝑡𝑡.
Maximize Act.
Compression Persevering 

Convergenceargmax
Δ𝑋𝑋

𝐵𝐵(Δ𝑋𝑋)

Gradient variance 
is bounded
𝔼𝔼 �∇𝜃𝜃𝑓𝑓

2

≤ (1 + 𝑒𝑒2)𝑉𝑉2

Gradient error
is bounded

𝐷𝐷(Δ𝑋𝑋) ≤ 𝑒𝑒2𝑉𝑉2 Δ∇𝜃𝜃𝑓𝑓 2 ≤ 𝐷𝐷(Δ𝑋𝑋)



Approximating Norms
Two Issues with calculating activation errors this way:

28AC-GC, NeurIPS, Dec. 2021

Calculating the norms are 
expensive

Gradient information is 
not available in the 

forward pass

Calculate norms only 
every 100 iterations

Estimate the norms 
using a rolling mean



Compression



Compression Metric
Choose B given that most methods use precision reduction

𝐵𝐵 Δ𝑋𝑋 ∝ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐵𝐵 Δ𝑋𝑋 ≡�
𝑖𝑖

log Δ𝑥𝑥𝑖𝑖
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Compression Methods
Case studies on activation error-bounded compression methods

Max
Activation

Error

Fixed Point Integer

JPEG

CuSZ[2]

(Error-bounded compression)

Error Est.

AC-GC, NeurIPS, Dec. 2021 31

[2] S. Jin, G. Li, S. L. Song, D. Tao, “A Novel Memory-Efficient Deep Learning Training Framework via Error-Bounded Lossy Compression”, in ArXiv 2020



Results



Error Bounds are Derived Per-Layer
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norm ReLU sumconv dropoutlinear

Δ𝑥𝑥𝑛𝑛𝑛𝑛𝑛𝑛𝑛 2 ≤ 𝑒𝑒2𝑉𝑉2
1

𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 ∇𝑌𝑌𝑓𝑓 2

Filter size
Activation 

dimensions



Accuracy and Compression

ACGC + Fixpoint

ACGC + CuSZ
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AC-GC Fixpoint Related Works*
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>16x cost
Sensitive to 

seeding

On frontier
No tuning

* Data obtained from original work; may use a 
different set of models from AC-GC

(BAA) A. Chakrabarti, B. Moseley, in NeurIPS 2020
(ACTNN) J. Chen, L. Zheng, et. al, in ICML 2021



Theoretical VERSUS EMPIRICAL (MNIST)

Bounds are empirically satisfied
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Baseline Loss, ℒ

Bound, (1 + e2)ℒ

Fixpoint activation 
compression

Change in bitwidth
− log2 𝑒𝑒
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