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ACTIVATIONS DURING TRAINING

Activations are memoized layer outputs from the forward pass
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LOSSY ACTIVATION COMPRESSION

Larger networks and larger batch sizes mean more activations

Forward Pass Backward Pass
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THE ACCELERATOR MEMORY WALL

GPIPE
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Due to physical
limitations, e.g.
bandwidth and
memory
technology
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DECREASING ACTIVATION MEMORY

Many orthogonal approaches Relatlve to normaI tralnlng
Training Memory Accuracy
AR Throughput after Training
Scheduling

Recalculation

Offloading X X X X

Lossless Compression X X

XX X
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LOSSY ACTIVATION COMPRESSION

Discard some data, and compress

Forward Pass Backward Pass
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LOSSY ACTIVATION COMPRESSION

Discard some data, and compress

Forward Pass Backward Pass
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DRAWBACKS OF LOSSY COMPRESSION

How to avoid explosions during training?

“This is a cat” “Thisis acat” “This is acat”

Yes! Uhh, ok...
v A

S
"% :

A Neural Network
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TUNING THE COMPRESSION RATE IS HARD

Grid Search
Fixpoint Act. Compr.

SuccessiveHalving

Fixpoint Act. Compr. -

This Work
Automatic Fixpoint

05 20 40 60 80
Training Time (days, RTX 2080 T1)

Compression rate search cost. Each box

indicates a different compression rate
(1- to 16-bit fixpoint)
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CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

Maximize Act.
Compression g.t.
argmax B (AX)

AX

Persevering
Convergence

Goal: An efficient way to get compression rate from convergence
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CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

Maximize Act.
Compression g.t.
argmax B (AX)

AX

Persevering
Convergence -
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KEY INSIGHT: ALLOW LOSS TO INCREASE

Takes advantage of behaviour
., Uncompressed , Compressed
Training Training
Expected
Loss

Training Training
Iterations I[terations
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STOCHASTIC GRADIENT DESCENT NOTATION

Loss of examplen
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SGD THEORETICAL CONVERGENCE RATES

Many results on SGD convergence rates, we use:

E[£(6®) - £(6™)] <| (1 - ;)Y £(6©@) = £(6©)) + Crav?

(1, Co: Constants
V2: Gradient Variance

[1] H Karimi, J Nutini, M Schmidt, “Linear Convergence of Gradient and Proximal-Gradient Methods Under the Polyak-tojasiewicz Condition,”
ECML PKDD 2016
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ALLOWING ERRORS FOR GOMPRESSION
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GRADIENT VARIANGE

Compressed training can be viewed as SGD with increased variance

From Karimi et. al;

Gradient “variance” is bounded:
2
E|[[Vofn, 0] < V2

Under compression:
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CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

Gradient variance
is bounded

Maximize Act. )

C : Persevering
ompression 5. t. Convergence
argmax B (AX) ° 5
AX
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ERROR-VARIANGE RELATIONSHIP

Using an additive gradient error:
Vof =Vof +AVef

The constraint on variance:
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>

|s satisfied by:
1AV fII* < e®V?
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CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

Gradient variance
is bounded

Maximize Act.
Compression g.t.
argmax B (AX)

AX

Persevering

Gradient error
Convergence

is bounded
AV f|* < e*V?
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BOUNDING FUNCTION

Gradient error is related to activation error
Now we just need to calculate it for a layer, e.g., convolution...

K,.C.R,S («N,HW of 2
18V, f11? =—E e s S A e o)< €2V
nkhw

which is not very useful... the solution is not closed-form. Instead use:

Where we find D (AX) that is as close as
possible to the error norm.

AV, f|1? < D(AX) < e?V?2 —>
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CONSTRAINED OPTIMIZATION FOR LOSSY ACTIVATIONS

Gradient variance
is bounded

Maximize Act.
Compression g.t.
argmax B (AX)

AX

Persevering .
C Gradient error
onvergence is bounded

D(AX) < e?V? 1AV, FI2 < D(AX)

N
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APPROXIMATING NORMS

Two Issues with calculating activation errors this way:

Gradient information is
not available in the
forward pass

Calculating the norms are
expensive

Calculate norms only
every 100 iterations

Estimate the norms
using a rolling mean
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COMPRESSION METRIC

Choose B given that most methods use precision reduction

B(AX) < Number of bits removed

B(AX) = Z log|Ax; |
L
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COMPRESSION METHODS

Case studies on activation error-bounded compression methods

Fixed Point Integer

Max
Activation
Error

CuSz!2!
(Error-bounded compression)

[2]S. Jin, G. Li, S. L. Song, D. Tao, “A Novel Memory-Efficient Deep Learning Training Framework via Error-Bounded Lossy Compression”, in ArXiv 2020
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RESULTS




ERROR BOUNDS ARE DERIVED PER-LAYER
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ACCURACY AND COMPRESSION
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THEORETICAL VERSUS EMPIRICAL (MNIST)
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Bounds are empirically satisfied
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