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Offline Reinforcement Learning & Policy Selection

e Challenge for RL application: environment interactions are
often expensive

e  Offline RL: training policies on logged data without additional
interactions

e How do we choose the best policy for deployment?

Problem setting: Active Offline Policy Selection (active ops)

Which policy to evaluate to find a good

policy for deployment?
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Bayesian Optimization in one slide

e  Goal: maximizing an expensive-to-query black-box function

arg max f(x)
TEX

e  Probabilistic model for f(x): Gaussian process
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Bayesian Optimization in one slide

e  Goal: maximizing an expensive-to-query black-box function

arg max f(x)
TEX

e  Probabilistic model for f(x): Gaussian process

e |teratively finds the next query point with both high posterior mean
and high posterior variance (optimism in the face of uncertainty)

ParBayesianOptimization in Action (Round 1)
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Active ops as Bayesian optimization

Problem: argmax pu(my)
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Active ops as Bayesian optimization
Problem: argmax pu(my)
1<k<K
1. Q: Off-policy evaluation (OPE)
Precomputed a priori
Comes from §
2. : Episodic return
Expensive to sample (use active learning)
Comes from &

Then, Gaussian Processes to model correlation between policies
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Policy Kernel

e Insight: similar actions -> similar performance
e Measure the similarity between policies by their actions on a set of states

Policy 1 Policy 2 Action distance

=« d{x)

State 1 1

Average over states: d(m1,72) = [d({,%)T d(se=b)] /2
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Experiments: domains

Three sets of control task suites (2 continuous and 1 discrete action space)

o DM Control Suite (9 environments)
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Experiments: quantitative results

Simple regret averaged over 100 experiments with 50 policies each in each of 9 environments of dm-control.
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Experiments: quantitative results

The same results hold in MPG and Atari domains with 200 policies.
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Experiments: quantitative results

The same results hold in MPG and Atari domains with 200 policies.
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Experiments: qualitative results

Online Policy Selection A-ops
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Experiments: ablations

simple regret

Scaling with number of policies

0.8

0.6

0.4

0.2

0.0

MPG

o
o ~—

100 200 300
# trajectories

400

N

online 200
online 100
online 50
online 25

O



Experiments: ablations

Scaling with number of policies

MPG

0.6

0.4

simple regret

0.2 -

0.0

0 100 200 300 400
# trajectories

online 200
online 100
online 50
online 25

Different OPE methods

O



Experiments: ablations

simple regret

Scaling with number of policies
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e Use of trajectories:
Help to improve offline policy evaluation, or policies themselves

e States for kernel
Some states are more informative than others

e  Safety risks
BO methods + safe exploration

e Hope that our findings could accelerate progress in solving real world problems with offline RL!

Thank you for your attention!
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