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Problem setting: Active Offline Policy Selection (active ops)

● Challenge for RL application: environment interactions are 
often expensive

● Offline RL: training policies on logged data without additional 
interactions

● How do we choose the best policy for deployment?

Which policy to evaluate to find a good 
policy for deployment?
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and high posterior variance (optimism in the face of uncertainty)
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Online + Offline + BO (independent)
Online + Offline + BO (GP) = A-ops
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Online Policy Selection

The same results hold in MPG and Atari domains with 200 policies.

Does not 
depend on the 

difficulty of 
policy training.
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Help to improve offline policy evaluation, or policies themselves
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Some states are more informative than others
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BO methods + safe exploration 

● Hope that our findings could accelerate progress in solving real world problems with offline RL!

Thank you for your attention!
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