XCiT: Cross-Covariance Image Transformers

Alaaeldin El-Nouby, Hugo Touvron, Mathilde Caron, Piotr Bojanowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Natalia Neverova, Gabriel Synnaeve, Jakob Verbeek, Hervé Jégou

NeurlPS 2021

What is XCiT?

XCiT is a new form of Vision Transformers with Cross-Covariance Attention (XCA) as its core operation.

XCiT has <u>linear complexity</u> in image size (i.e. number of patches). It achieves a balance between the strong performance of ViT models and the <u>flexiblity</u> and <u>scalibility</u> of ConvNets in dealing of variable sized images.

Due to the favorable properties of XCiT, it exhibits strong performances for a variety of computer vision tasks, including dense prediction task like detection and segmentation.

Background: Vision Transformers

Vision Transformers (ViT) have shown a very strong performance for image classification using self-attention as the core operation in a convolutional-free model (aside from the linear projection).

Self-Attention

 $\operatorname{Attention}(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

Using 16x16 patches

ImageNet 224 images: N=196

COCO 1300x800 image: N=4100

Background: Vision Transformers

ViT-Small (DeiT) achieves a higher performance compared to ResNet-50 on a standard ImageNet benchmark using 224 images.

However, we can notice that when ViT is tested using a different resolution, it <u>quickly drops</u> in performance as we move away from the train resolution. This can be harmful for tasks requiering processing of variable resolution images (e.g. Object Detection)

On the other hand ResNet-50 shows a better robsutness to changes in resolution.

Concurent Work: Efficient Transformers

 $V(H_iW_i)\times C_i$

Pyramid Vision Transformer

a) Multi-Scale

b) Approximate **Attention**

Swin Transformer

a) Multi-Scale

b) Approximate **Attention**

Motivation: Cross-Covariance Attention

Attention
$$(Q, K, V) = \operatorname{softmax}(\frac{\overline{QK^T}}{\sqrt{d_k}})V$$

The inner product between the Queries and Keys resmebles the Gram Matrix *G*.

In the special case where the projection matrices are identity, this relationship is exact.

$$QK^{\top} = XW_qW_k^{\top}X^{\top}$$

$$G=XX^{\top}$$

The Gram and the Covariance matrices have a strong relationship that have been used for efficient computation of Principle components (PCA).

$$G=XX^{\top}$$
 $C=X^{\top}X$

The non-zero part of the eigenspectrum of the Gram and covariance matrix are equivalent, and the eigenvectors of C and G can be computed in terms of each other.

If V is the eigenvectors of G, then U the eigenvectors of C:

$$U=XV$$

Self-attention (Vaswani et al.)

$$\mathcal{A}(K,Q) = \operatorname{Softmax} \left(Q \right)$$
 $\mathcal{A} \in \mathbb{R}^{N \times N}$

Cross-Covariance Attention (XCA)

$$\mathcal{A}_{\mathrm{XC}}(K,Q) = \mathrm{Softmax} \begin{pmatrix} \hat{K}^{\top}/\tau & \hat{Q}^{\top} \\ \mathcal{A}_{\mathrm{XC}} \in \mathbb{R}^{d_k \times d_q} \end{pmatrix}$$

$$K \in \mathbb{R}^{N \times d_k}, \ Q \in \mathbb{R}^{N \times d_q}$$

Motivation: Cross-Covariance Attention

The covariance matrix has a complexity of d^2 , we can study using attention over the covariance matrix as an alternative for the Gram based attention.

$$G = XX^{\top} \qquad \qquad C = X^{\top}X$$

$$QK^{\top} = XW_qW_k^{\top}X^{\top} \qquad \qquad K^{\top}Q = W_k^{\top}X^{\top}XW_q$$

Intuitively, we can think of cross-covariance attention as:

- Dynamically generating 1D filters based on the feature statistics across patches
- An advanced, attention-based version of Squeeze and Excitation

Self-attention (Vaswani et al.)

$$\mathcal{A}(K,Q) = \operatorname{Softmax}\left[Q\right] K^{\top}/\sqrt{d_k}$$

$$\mathcal{A} \in \mathbb{R}^{N \times N}$$

Cross-Covariance Attention (XCA)

$$\mathcal{A}_{\mathrm{XC}}(K,Q) = \mathrm{Softmax} \begin{pmatrix} \hat{K}^{\top}/\tau & \hat{Q}^{\top} \\ \mathcal{A}_{\mathrm{XC}} \in \mathbb{R}^{d_k \times d_q} \end{pmatrix}$$

$$K \in \mathbb{R}^{N \times d_k}, \ Q \in \mathbb{R}^{N \times d_q}$$

Cross-Covariance Image Transformer

We build the XCiT model with XCA at its core

- XCiT has a columnar structure with a consistent scale for the features from start to end.
- The linear projection of patches is replaced with a Convolutional based patch projection (similar to LeViT)
- We use the same FFN and LayerNorm setup as ViT.

• Since XCA only allows <u>Implicit</u> communication across patches. We add a Local Patch Interaction (LPI) module which consists of a lightweight depth-wise 3x3 Conv.

Reshape

 $H \times W \times d$

XCiT family of models

Model	Depth	d	#heads	#params	GFLOPs		ImageN	-1 acc. (%)	
	_			_	@224/16	@384/8	@224/16	@224/16Υ ⁻	@384/8Υ↑
XCiT-N12	12	128	4	3M	0.5	6.4	69.9	72.2	77.8
XCiT-T12	12	192	4	7M	1.2	14.3	<i>7</i> 7.1	78.6	82.4
XCiT-T24	24	192	4	12M	2.3	27.3	79.4	80.4	83.7
XCiT-S12	12	384	8	26M	4.8	55.6	82.0	83.3	85.1
XCiT-S24	24	384	8	48M	9.1	106.0	82.6	83.9	85.6
XCiT-M24	24	512	8	84M	16.2	188.0	82.7	84.3	85.8
XCiT-L24	24	768	16	189M	36.1	417.9	82.9	84.9	86.0

Based on the XCiT architecture, we designed a family of models with different trade-offs in accuracy, parameter count and FLOPS. The design parameters are:

- Number of Layers ∈ [12, 24]
- Dimensionality of the patch embeddings ∈ [128, 192, 384, 512, 768]
- Number of heads

Since XCiT has linear complexity in number of patches, it allows for more fine-grained sampling of the patches. We experiment with 8x8 patches in addition to the 16x16 ones.

Using 8x8 patches and 384 image we can achieve a strong performance of 86.0% on IN-1k top-1, outperforming SoTA methods under the same number of parameters.

XCiT: Memory and Throughput

Model	#params	ImNet		Image Resolution						
	$\times 10^6$	Top-1	2242		3842		5122		10242	
		@224	im/sec	mem (MB)	im/sec	mem (MB)	im/sec	mem (MB)	im/sec	mem (MB)
ResNet-50	25	79.0	1171	772	434	2078	245	3618	61	14178
DeiT-S	22	79.9	974	433	263	1580	116	4020	N/A	OOM
CaiT-S12	26	80.8	671	577	108	2581	38	<i>7</i> 11 <i>7</i>	N/A	OOM
PVT-Small	25	79.8	777	1266	256	3142	134	5354	N/A	OOM
Swin-T	29	81.3	704	1386	220	3890	120	6873	29	26915
XCiT-S12/16	26	82.0	781	731	266	1372	151	2128	37	7312

10

XCiT: Variable Sized Images

The cross-covariance attention, in particular the softmax operation, operates over a constant number of entities (i.e. d channels), regardless what is the image size.

On the other hand, Gram-based self-attention can suffer from a shift in statistics when the image size changes.

We can see that XCiT has a much better behaviour compared to ViT/DeiT w.r.t the drop in performance as the test image resolution changes. The behaviour matches or exceeds that of ConvNets (ResNet-50).

XCiT: Visualizations

Visualization of the CLS attention layer (Gram-based)

- Every head (rows) attends to semantically coherent salient regions in the image
- Some patterns emerge, such that the head salient to humans heads, highlights birds heads as well. However, when such a pattern is not present, it can dedicate its capacity towards a different salient region like a car cockpit.

XCiT: Visualizations

We can also visualize the spatial regions contributing most to the cross-covariance matrix by simply computing the magnitude of each patch embedding in the Keys or the queries

Results: Image Classification

- XCiT outperforms/matches all other previous and concurrent methods when comparing models of similar parameter counts, including CaiT and NFNets.
- We can observe a strong boost in performance when the 8x8 patch size is used, which is only enabled by the linear complexity of XCiT.
- The gain in performance due to the 8x8 patches is accompanied by higher FLOPS.

			_	1	
Model #p	arams	FLOPs	Res.	ImNet	V2
EfficientNet-B5 RA [18]	30M	9.9B	456	83.7	_
RegNetY-4GF [53]	21M	4.0B	224	80.0	72.4
DeiT-SΥ [65]	22M	4.6B	224	81.2	68.5
Swin-T [44]	29M	4.5B	224	81.3	_
CaiT-XS24 $\Upsilon \uparrow [68]$	26M	19.3B	384	84.1	74.1
XCiT-S12/16Υ	26M	4.8B	224	83.3	72.5
XCiT-S12/16介↑	26M	14.3B	384	84.7	74.1
XCiT-S12/8介↑	26M	55.6B	384	85.1	74.8
EfficientNet-B7 RA [18]	66M	37.0B	600	84.7	
NFNet-F0 [10]	72M	12.4B	256	83.6	72.6
RegNetY-8GF [53]	39M	8.0B	224	81.7	72.4
TNT-B [79]	66M	14.1B	224	82.8	_
Swin-S [44]	50M	8.7B	224	83.0	_
CaiT-S24↑ ↑ [68]	47M	32.2B	384	85.1	75.4
XCiT-S24/16Υ	48M	9.1B	224	83.9	73.3
XCiT-S24/16Υ↑	48M	26.9B	384	85.1	74.6
XCiT-S24/8介↑	48M	105.9B	384	85.6	75.7
Fix-EfficientNet-B8 [66]	87M	89.5B	800	85.7	75.9
RegNetY-16GF [53]	84M	16.0B	224	82.9	72.4
Swin-B↑ [44]	88M	47.0B	384	84.2	_
DeiT-BΥ ↑ [65]	87M	55.5B	384	85.2	75.2
CaiT-S48Υ ↑ [68]	89M	63.8B	384	85.3	76.2
XCiT-M24/16℃	84M	16.2B	224	84.3	73.6
XCiT-M24/16Υ ↑	84M	47.7B	384	85.4	75.1
XCiT-M24/8Υ↑	84M	187.9B	384	85.8	76.1
NFNet-F2 [10]	194M	62.6B	352	85.1	74.3
NFNet-F3 [10]	255M	114.8B	416	85.7	75.2
CaiT-M24Υ ↑ [68]	186M	116.1B	384	85.8	76.1
XCiT-L24/16Υ	189M	36.1B	224	84.9	74.6
XCiT-L24/16↑↑	189M	106.0B	384	85.8	75.8
XCiT-L24/8Υ↑	189M	417.8B	384	86.0	76.6

Results: SSL with DINO

SSL Method	Model	#params	FLOPs	Linear	k-NN
MoBY [76]	Swin-T [44]	29M	4.5B	75.0	_
DINO [12]	ResNet-50 [28]	23M	4.1B	74.5	65.6
DINO [12]	ViT-S/16 [22]	22M	4.6B	76.1	72.8
DINO [12]	ViT-S/8 [22]	22M	22.4B	79.2	77.2
DINO [12]	XCiT-S12/16	26M	4.9B	77.8	76.0
DINO [12]	XCiT-S12/8	26M	18.9B	79.2	<i>77</i> .1
DINO [12]	ViT-B/16 [22]	87M	17.5B	78.2	76.1
DINO [12]	ViT-B/8 [22]	87M	78.2B	80.1	77.4
DINO [12]	XCiT-M24/16	84M	16.2B	78.8	76.4
DINO [12]	XCiT-M24/8	84M	64.0B	80.3	77.9
DINO [12]	XCiT-M24/8↑384	84M	188.0B	80.9	-

Results: SSL with DINO

SSL Method	Model	#params	FLOPs	Linear	k-NN
MoBY [76]	Swin-T [44]	29M	4.5B	75.0	_
DINO [12]	ResNet-50 [28]	23M	4.1B	74.5	65.6
DINO [12]	ViT-S/16 [22]	22M	4.6B	76.1	72.8
DINO [12]	ViT-S/8 [22]	22M	22.4B	79.2	77.2
DINO [12]	XCiT-S12/16	26M	4.9B	77.8	76.0
DINO [12]	XCiT-S12/8	26M	18.9B	79.2	<i>7</i> 7.1
DINO [12]	ViT-B/16 [22]	87M	17.5B	78.2	76.1
DINO [12]	ViT-B/8 [22]	87M	78.2B	80.1	77.4
DINO [12]	XCiT-M24/16	84M	16.2B	78.8	76.4
DINO [12]	XCiT-M24/8	84M	64.0B	80.3	77.9
DINO [12]	XCiT-M24/8↑384	84M	188.0B	80.9	-

Results: Ablations

- We notice that the convolutional patch projection imporves the performance strongly for 16x16 patch models, but the impact is smaller for 8x8 patch models
- The LPI module improves the performance by 1.2%. On the other hand, the model without XCA has a weak performance of 75.9%
- We notice that we have very unstable training the L2-Normalization and often our training collapses.
- The Learned temperature parameter has a positive small improvement to the performance with no overhead.

Model	Ablation	ImNet top-1 acc.
XCiT-S12/16 XCiT-S12/8	Baseline	82.0 83.4
XCiT-S12/16 XCiT-S12/8	Linear patch proj.	81.1 83.1
XCiT-S12/16	w/o LPI layer w/o XCA layer	80.8 75.9
XCiT-S12/16	w/o ℓ_2 -normal. w/o learned temp. $ au$	failed - 81.8

Results: Object detection w/ COCO

- XCiT uses a columnar structure with only one scale for all layers.
- To obtain multiple scale features for FPN, we use:
 - Maxpooling to obtain lower resolution features.
 - Transposed Convolution to obtain the higher resolution feature maps.
- We show that having a pyramidal structure is not a necessity for adapting transformers for dense prediction tasks.
- All our models uses a Mask R-CNN framework with XCiT only replacing the trunk. Models are trained for the standard 3x schedule.
- XCiT outperforms PVT and ViL across all operating points. It provides a competitive performance with Swin, where XCiT provides a better performance for smaller capacity models and Swin marginally improving the performance for the larger sized model.

Backbone	#params	AP^b	AP^b_{50}	AP^b_{75}	AP^m	AP^m_{50}	AP^m_{75}
ResNet18 [28]	31.2M	36.9	57.1	40.0	33.6	53.9	35.7
PVT-Tiny [71]	32.9M	39.8	62.2	43.0	37.4	59.3	39.9
ViL-Tiny [81]	26.9M	41.2	64.0	44.7	37.9	59.8	40.6
XCiT-T12/16	26.1M	42.7	64.3	46.4	38.5	61.2	41.1
XCiT-T12/8	25.8M	44.5	66.4	48.8	40.3	63.5	43.2
ResNet50 [28]	44.2M	41.0	61.7	44.9	37.1	58.4	40.1
PVT-Small [71]	44.1M	43.0	65.3	46.9	39.9	62.5	42.8
ViL-Small [81]	45.0M	43.4	64.9	47.0	39.6	62.1	42.4
Swin-T [44]	47.8M	46.0	68.1	50.3	41.6	65.1	44.9
XCiT-S12/16	44.3M	45.3	67.0	49.5	40.8	64.0	43.8
XCiT-S12/8	43.1M	47.0	68.9	51.7	42.3	66.0	45.4
ResNet101 [28]	63.2M	42.8	63.2	47.1	38.5	60.1	41.3
ResNeXt101-32	62.8M	44.0	64.4	48.0	39.2	61.4	41.9
PVT-Medium [71]	63.9M	44.2	66.0	48.2	40.5	63.1	43.5
ViL-Medium [81]	60.1M	44.6	66.3	48.5	40.7	63.8	43.7
Swin-S [44]	69.1M	48.5	70.2	53.5	43.3	67.3	46.6
XCiT-S24/16	65.8M	46.5	68.0	50.9	41.8	65.2	45.0
XCiT-S24/8	64.5M	48.1	69.5	53.0	43.0	66.5	46.1
ResNeXt101-64 [75]	101.9M	44.4	64.9	48.8	39.7	61.9	42.6
PVT-Large [71]	81.0M	44.5	66.0	48.3	40.7	63.4	43.7
ViL-Large [81]	76.1M	45.7	67.2	49.9	41.3	64.4	44.5
XCiT-M24/16	101.1M	46.7	68.2	51.1	42.0	65.6	44.9
XCiT-M24/8	98.9M	48.5	70.3	53.4	43.7	67.5	46.9

Results: Semantic Segmentation w/ ADE20k

- Uses the same FPN components as object detection
- XCiT outperforms ResNets, PVT, ViL and Swin for all operating points and using two different decoders.

Backbone	Semanti	c FPN	UperNet		
	#params	mIoU	#params	mIoU	
ResNet18 [28]	15.5M	32.9	-	_	
PVT-Tiny [71]	17.0M	35.7M	-	_	
XCiT-T12/16	8.4M	38.1	33.7M	41.5	
XCiT-T12/8	8.4M	39.9	33.7	43.5	
ResNet50 [28]	28.5M	36.7	66.5M	42.0	
PVT-Small [71]	28.2M	39.8	-	-	
Swin-T [44]	-	-	59.9M	44.5	
XCiT-S12/16	30.4M	43.9	52.4M	45.9	
XCiT-S12/8	30.4M	44.2	52.3M	46.6	
ResNet101 [28]	47.5M	38.8	85.5M	43.8	
ResNeXt101-32 [75]	47.1M	39.7	-	_	
PVT-Medium [71]	48.0M	41.6	-	_	
Swin-S [44]	_	-	81.0M	47.6	
XCiT-S24/16	51.8M	44.6	73.8M	46.9	
XCiT-S24/8	51.8M	47.1	73.8M	48.1	
ResNeXt101-64 [75]	86.4M	40.2	-	_	
PVT-Large [71]	65.1M	42.1	-	_	
Swin-B [44]	_	_	121.0M	48.1	
XCiT-M24/16	90.8M	45.9	109.0M	47.6	
XCiT-M24/8	90.8M	46.9	108.9M	48.4	

Summary

- XCiT is a new vision transformer with linear complexity in image size, providing a large saving in terms of memory compared to recent vision transformers.
- XCiT achieves a balance between the strong performance of transformers and the flexibility of ConvNets.
- XCiT exhibits a strong performance on a variety of computer vision tasks including SSL, detection and segmentation.
- Code and weights available: https://github.com/facebookresearch/xcit

