

One Loss for All: Deep Hashing with a Single Cosine Similarity based Learning Objective

Jiun Tian Hoe^{1*}, Kam Woh Ng^{2,3*}, Tianyu Zhang⁴ Chee Seng Chan¹, Yi-Zhe Song^{2,3} & Tao Xiang^{2,3}

¹Universiti Malaya, Malaysia

²University of Surrey, United Kingdom

³iFlyTek-Surrey Joint Research Centre on Artificial Intelligence

⁴Geek+, China

Table of Content

- Problem background & motivation
- Binary Hashing with OrthoHash*
- Experiment Results
- Analysis on performance
- Conclusion

^{*} **OrthoHash** is the proposed method.

Image Retrieval in General

Nearest Neighbor (NN) Search

Searching: Linear scan, O(ND), slow

$$\operatorname*{argmin}_{\mathrm{n} \in \{1,2,...,\mathrm{N}\}} \left| \left| q - x_n
ight|
ight|_2^2$$

Storage: High memory consumption

Solution: Approximate NN Search

- Aims to improve searching speed
- No need to be exact neighbors
- Methods:
 - i. Tree-based search
 - ii. Product Quantization
 - iii. Binary Hashing

Binary Hashing

• Searching: Low-level operation, faster

$$\mathop{
m argmin}\limits_{{
m n}\in\{1,2,...,{
m N}\}} \left|\left|q-x_n
ight|
ight|_2^2$$
 popcount(q XOR x_n)

Storage: Lower memory consumption

Image Retrieval with Binary Codes

Binary Hashing

Main Objective:

 Learn a hash layer that map embeddings into binary codes

Main Difficulty:

Sign function is not differentiable

Binary Hashing

- More constraints:
 - 1. Discriminative codes

2. Minimal quantization error

$$\sum_{i}^{N}\sum_{k}^{K}\left|\left|f_{ik}-b_{ik}
ight|
ight|_{2}^{2}$$

3. Maximizing bit capacity – bit balance [1]

For each bit:

$$\sum_{i}^{N} b_{ik} = 0$$

4. Code orthogonality – uncorrelated bit [1]

$$B \in \{-1,1\}^{N imes K} \quad , \qquad rac{1}{N} B^T B = I$$

Too many objectives to learn! Difficult to optimize!

How to unify all objectives? – OrthoHash

- How to unify all objectives? OrthoHash
- Properties:
 - a) Classification-based learning objective with cosine/angular margin
 - b) Balanced bits through *Batch Normalization (BN)*
 - c) Pre-defined orthogonal hash targets
 - d) Can learn binary hash codes end-to-end without bypassing the non-differentiable sign function (no sign function involved during training)

a) Classification-based learning objective with cosine/angular margin

Without Cosine/Angular margin

With Cosine/Angular margin

b) Balanced bits through Batch Normalization (BN)

^{*} Cross Entropy represents classification-based objective with cosine/angular margin

c) Pre-defined *orthogonal* hash targets

c) Pre-defined *orthogonal* hash targets

Experiment Results (Category Level)

Methods	ImageNet100 (mAP@1K)				NUS-WIDE (mAP@5K)				MS COCO (mAP@5K)				
Wethous	16	32	64	128	16	32	64	128	16	32	64	128	
HashNet ² [4]	0.343	0.480	0.573	0.612	0.814	0.831	0.842	0.847	0.663	0.693	0.713	0.727	
DTSH ³ [44]	0.442	0.528	0.581	0.612	0.816	0.836	0.851	0.862	0.699	0.732	0.753	0.770	
SDH-C1 [30]	0.584	0.649	0.664	0.662	0.763	0.792	0.816	0.832	0.671	0.710	0.733	0.742	
GreedyHash ¹ [40]	0.570	0.639	0.659	0.659	0.771	0.797	0.815	0.832	0.677	0.722	0.740	0.746	
JMLH ¹ [39]	0.517	0.621	0.662	0.678	0.791	0.825	0.836	0.843	0.689	0.733	0.758	0.768	
DPN^{1} [11]	0.592	0.670	0.703	0.714	0.783	0.818	0.838	0.842	0.668	0.721	0.752	0.773	
CSQ ¹ [49]	0.586	0.666	0.693	0.700	0.797	0.824	0.835	0.839	0.693	0.762	0.781	0.789	
CE^1	0.350	0.379	0.406	0.445	0.744	0.770	0.796	0.813	0.602	0.639	0.658	0.676	
CE+BN ¹	0.533	0.586	0.612	0.617	0.801	0.814	0.823	0.825	0.697	0.721	0.729	0.726	
CE+Bihalf ¹ [26]	0.541	0.630	0.661	0.662	0.802	0.825	0.836	0.839	0.674	0.728	0.755	0.757	
OrthoCos ¹	0.583	0.660	0.702	0.714	0.795	0.826	0.842	0.851	0.690	0.745	0.772	0.784	
OrthoCos+Bihalf ¹	0.562	0.656	0.698	0.711	0.804	0.834	0.846	0.852	0.690	0.746	0.775	0.782	
OrthoCos+BN1	0.606	0.679	0.711	0.717	0.804	0.836	0.850	0.856	0.709	0.762	0.787	0.797	
OrthoArc+BN ¹	0.614	0.681	0.709	0.714	0.806	0.833	0.850	0.856	0.708	0.762	0.785	0.794	

Table 1: Performance of different methods for 4 different bits on different benchmark datasets. All results are run by us. The superscript ¹, ² and ³ indicate point-wise, pair-wise and triplet-wise method respectively. **Bold** values indicate best performance in the column.

Experiment Results (Instance Level)

Methods	GLDv2 (mAP@100)			ROxf-	Hard (m	AP@all)	RParis-Hard (mAP@all)			
Wediods	128	512	2048	128	512	2048	128	512	2048	
HashNet ² [4]	0.018	0.069	0.111	0.034	0.058	0.307	0.133	0.190	0.490	
DPN ¹ [11]	0.021	0.089	0.133	0.053	0.184	0.303	0.224	0.399	0.562	
GreedyHash ¹ [40]	0.029	0.108	0.144	0.032	0.251	0.373	0.128	0.531	0.652	
CSQ ¹ [49]	0.023	0.086	0.114	0.093	0.284	0.398	0.245	0.541	0.649	
OrthoCos+BN1	0.035	0.111	0.147	0.184	0.359	0.447	0.416	0.608	0.669	
R50-DELG-H	-	-	0.125*	-	-	0.471	-	-	0.682	
R50-DELG-C	-	-	0.138*	-	-	0.510	-	-	0.715	

Table 2: Performance of different methods for 3 different numbers of bits on different instance-level benchmark datasets. All results are run by us. The superscript ¹ and ² indicate point-wise and pair-wise method respectively. **Bold** values indicate best performance in the column. * indicates using 512 × 512 image inputs, hence different performance as reported by DELG [2]. R50-DELG-H denotes Hamming distance retrieval using the sign of extracted descriptors. R50-DELG-C denotes Cosine distance retrieval using the extracted descriptors.

- Learning discriminative codes with pre-defined orthogonal hash targets:
 - ➤ Cross entropy with cosine margin [2] minimize the intra-class distance.

Low intra-class hamming distance

LMCL: Large margin cosine loss

- Learning discriminative codes with pre-defined orthogonal hash targets:
 - ➤ Cross entropy with cosine margin [2] minimize the intra-class distance.
 - Orthogonal targets (like Hadamard matrix) maximize the Hamming distance between every class (maximize inter-class distance).

1. Orthogonal hash targets ensure code orthogonality.

- 1. Orthogonal hash targets ensure code orthogonality.
- 2. Batch Normalization (BN) layer compute the output with zero-mean, hence, ensure **bit balance**.

- 1. Orthogonal hash targets ensure code orthogonality.
- 2. Batch Normalization (BN) layer compute the output with zero-mean, hence, ensure **bit balance**.
- 3. Quantization error is minimized simultaneously.

More analysis on performance

- How the gap between intra-class and inter-class Hamming distances affects the performance?
 - >The larger the gap, the better the performance.

Figure 3: Histogram of intra-class and inter-class Hamming distances with 64-bits ImageNet100. The arrow annotation is the separability in Hamming distances, $\mathbb{E}[D_{inter}] - \mathbb{E}[D_{intra}]$. We normalized the frequency so that sum of all bins equal to 1.

Conclusion

- To achieve good performance in image retrieval with binary hash codes, one must ensure:
 - a) Discriminative binary codes
 - b) Low quantization errors
 - c) Maximize the bit capacity in the codes
 - d) Ensure orthogonality in hash centers (average codes for each class)
- We proposed OrthoHash
 - unify all the objectives in above (OrthoCos/OrthoArc are variants of OrthoHash)
 - riangle easy to optimize with **only single classification-based** learning objective without bypassing the non-differentiable problem.

Thank you!

https://github.com/kamwoh/orthohash

