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Image Retrieval in General



Nearest Neighbor (NN) Search

• Searching: Linear scan, O(ND), slow

• Storage: High memory consumption



Solution: Approximate NN Search

• Aims to improve searching speed

• No need to be exact neighbors

• Methods: 
i. Tree-based search
ii. Product Quantization
iii. Binary Hashing



Binary Hashing

• Searching: Low-level operation, faster

• Storage: Lower memory consumption



Image Retrieval with Binary Codes



Binary Hashing

Main Objective:
• Learn a hash layer 

that map embeddings 
into binary codes

Main Difficulty:
• Sign function is not 

differentiable



Binary Hashing
• More constraints:

• Too many objectives to learn! Difficult to optimize!

1. Discriminative codes

2. Minimal quantization error

3. Maximizing bit capacity – bit balance [1]

4. Code orthogonality – uncorrelated bit [1]

[1] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. NIPS 2009.



Binary Hashing through OrthoHash

• How to unify all objectives? – OrthoHash



Binary Hashing through OrthoHash
• How to unify all objectives? – OrthoHash
• Properties: 

a) Classification-based learning objective with cosine/angular margin
b) Balanced bits through Batch Normalization (BN)
c) Pre-defined orthogonal hash targets
d) Can learn binary hash codes end-to-end without bypassing the 

non-differentiable sign function (no sign function involved during 
training)



Binary Hashing through OrthoHash

a) Classification-based learning objective with cosine/angular 
margin

Without Cosine/Angular margin With Cosine/Angular margin

Lower intra-class variance
Higher inter-class distance



Binary Hashing through OrthoHash

b)  Balanced bits through Batch Normalization (BN)
ONLY Cross Entropy Cross Entropy + BN

* Cross Entropy represents classification-based objective with cosine/angular margin



Binary Hashing through OrthoHash

c) Pre-defined orthogonal hash targets

Cross Entropy + BN Cross Entropy + BN + Orthogonal Target 



Binary Hashing through OrthoHash

c) Pre-defined orthogonal hash targets



Experiment Results (Category Level)



Experiment Results (Instance Level)



Why OrthoHash performs well?
• Learning discriminative codes with pre-defined orthogonal hash 

targets:
ØCross entropy with cosine margin [2] minimize the intra-class 

distance.

[2] Wang et al. Cosface: Large margin cosine loss for deep face recognition. CVPR 2018.

LMCL: Large margin cosine loss

Low intra-class hamming distance



Why OrthoHash performs well?
• Learning discriminative codes with pre-defined orthogonal hash 

targets:
ØCross entropy with cosine margin [2] minimize the intra-class 

distance.
ØOrthogonal targets (like Hadamard matrix) maximize the Hamming 

distance between every class (maximize inter-class distance).

[2] Wang et al. Cosface: Large margin cosine loss for deep face recognition. CVPR 2018.

Large inter-class hamming distance

Cross Entropy OrthoHash



Why OrthoHash performs well?

1. Orthogonal hash targets ensure code orthogonality.
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2. Batch Normalization (BN) layer compute the output 

with zero-mean, hence, ensure bit balance.



Why OrthoHash performs well?

1. Orthogonal hash targets ensure code orthogonality.
2. Batch Normalization (BN) layer compute the output 

with zero-mean, hence, ensure bit balance.
3. Quantization error is minimized simultaneously.



More analysis on performance

• How the gap between intra-class and inter-class Hamming 
distances affects the performance?
ØThe larger the gap, the better the performance.



Conclusion
• To achieve good performance in image retrieval with binary 
hash codes, one must ensure:

a) Discriminative binary codes
b) Low quantization errors
c) Maximize the bit capacity in the codes
d) Ensure orthogonality in hash centers (average codes for each 

class)
• We proposed OrthoHash

Øunify all the objectives in above (OrthoCos/OrthoArc are variants of 
OrthoHash)

Øeasy to optimize with only single classification-based learning 
objective without bypassing the non-differentiable problem. 



Thank you!
https://github.com/kamwoh/orthohash
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https://github.com/kamwoh/orthohash

