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Introduction

* In this paper, we explore how to apply the Transformer to high-resolution image
generation based on Generative Adversarial Networks (GANS).

« Challenges:

« The quadratic scaling problem brought by the self-attention operation becomes
even worse when generating pixel-level details for high-resolution images.

« Generating images from noise inputs poses a higher demand for spatial coherency
In structure, color, and texture than discriminative tasks, and hence a more powerful
yet efficient self-attention mechanism is desired for decoding feature
representations from inputs.



Contributions

« We propose HiT, a Transformer-based generator for high-fidelity image generation. The
resulting architecture easily scales to high-definition image synthesis (with the resolution
of 1024 x 1024) and has a comparable throughput to StyleGAN2.

« We present a new form of sparse self-attention operation, namely multi-axis blocked
self-attention. It captures local and global dependencies within nonoverlapping image
blocks in parallel, each of which uses a half of attention heads.

« We introduce a cross-attention module performing attention between the input and
intermediate features. This module provides important global information to high-
resolution stages where self-attention operations are absent.

» The proposed HiT obtains competitive FID scores of 31.87 and 2.95 on unconditional
ImageNet 128 x 128 and FFHQ 256 x 256, respectively, highly reducing the gap
between ConvNet-based GANs and Transformer-based ones.



Approach: Main Architecture
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Approach: Two-Stage Framework
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Approach: Multi-Axis Blocked Self-Attention
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Approach: Multi-Axis Blocked Self-Attention

» The different stages of multi-axis self-attention for a [4, 4, C] input with the block size of
b = 2. The input is first blocked into 2 x 2 non-overlapping [2, 2, C] patches. Then
regional and dilated self-attention operations are computed along two different axes,
respectively, each of which uses a half of attention heads. The attention operations run

in parallel for each of the tokens and their corresponding attention regions, illustrated
with different colors.
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Approach: Cross-Attention for Self-Modulation
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Approach: Cross-Attention for Self-Modulation

 Two benefits:

 Self-modulation stabilizes the generator towards favorable conditioning values and
also appears to improve mode coverage.

« When self-attention modules are absent in high-resolution stages, attending to the
Input latent code provides an alternative way to capture global information when
generating pixel-level details.



Results: ImageNet

« Left: Comparison with the state-of-the-art methods on the ImageNet 128 x 128 dataset.
T is based on a supervised pre-trained ImageNet classifier.

Method FID| IS?
Vanilla GAN [12] 54.17 14.01
PacGAN?2 [30] 57.51 13.50
MGAN [15] 58.88 13.22
Logo-GAN-AE [44] 5090 14.44
Logo-GAN-RC [44]T 38.41 18.86
SS-GAN (sBN) [7] 43.87 .
Self-Conditioned GAN [31] | 40.30 15.82
ConvNet-R; 39.71 18.61
HiT (Ours) 31.87 21.32




Results: ImageNet

« Left: Comparison with the state-of-the-art methods on the ImageNet 128 x 128 dataset.
T is based on a supervised pre-trained ImageNet classifier. Right: Reconstruction FID
on the ImageNet 256 x 256 dataset. We note that VQVAE-2 utilizes a hierarchical
organization of VQ-VAE and thus has two codebooks Z.

Method FID| IS?
Vanilla GAN [12] 54.17 14.01
PacGAN?2 [30] 57.51 13.50
MGAN [15] 58.88 13.22
Logo-GAN-AE [44] 5090 14.44
Logo-GAN-RC [44]T 38.41 18.86
SS-GAN (sBN) [7] 43.87 .
Self-Conditioned GAN [31] | 40.30 15.82
ConvNet-R; 39.71 18.61
HiT (Ours) 31.87 21.32

Method Eib;ffil"zﬁ FID |
VQ-VAE [56] 32,1024 | 75.19
DALL-E [41] 32,8192 | 34.30
VQ-VAE-2 [42] gi: gg 10.00
VQGAN [11] 16,1024 | 8.00
VQ-HiT (Ours) | 16,1024 | 6.37




Results: Ablation Study

« We start with the INR-based generator [5, 26] conditioned on the input latent code and
gradually improve it with the proposed attention components and their variations. O/M
denotes “out-of-memory” error: the model cannot be trained for the batch size of one.

. ) #params Throughput

Model configuration (million) (images / sec) FID|, IST

Latent-code conditioned INR decoder [5, 26] \ 42.68 110.39 | 56.33 16.19
+  Cross-attention for self-modulation | 61.55 82.67 | 3594 19.42

All-to-all self-attention [58] | 67.60 - | OM  OM
S Axial attention [14, 60] \ 67.60 74.21 | 35.15 19.79
Q
g Blocked local attention [57, 67] 33.70 19.96
+  Interleaving blocked regional and dilated attention 67.60 75.54 3296  20.75

Multi-axis blocked self-attention (Ours) 32.23  20.96
+ Balancing attention between axes (Full model) ‘ 67.60 75.33 | 31.87 21.32

References

[5] Bepler et al. “Explicitly disentangling image content from translation and rotation with spatial-VAE”. NeurIPS, 2019.

[26] Kleineberg et al. “Adversarial generation of continuous implicit shape representations”. Eurographics, 2020.



Results: Ablation Study

« Performance as a function of the number of self-attention stages on ImageNet 128 x
128. The attention configuration is defined using the protocol [a, b], where a and b refer
to the number of stages in the low-resolution and high-resolution stages of the model,
respectively.

Attention configuration | [0,5] [1,4] [2,3] [3,2] [4,1]

#params (million) 61.55 66.01 67.19 6752 67.60
Throughput (images / sec) | 82.67 80.88 80.22 78.06 75.33
FID | 3594 3416 33.69 3272 31.87




Results: ImageNet 128 x 128

* Uncurated ImageNet 128 x 128 samples from ConvNet-R1 (left, FID: 39.71, IS: 18.61)
and the proposed HiT (right, FID: 31.87, IS: 21.32).
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Results: Higher Resolution Generation

« Comparison with the state-of-the-art methods on CelebA-HQ (left) and FFHQ (right) with
the resolutions of 256 x 256 and 1024 x 1024. bCR [70] is not applied at the 1024 x

1024 resolution.

Method

FID | (FFHQ)
x 256 x1024

U-Net GAN [46]

7.63 -

FID | (CelebA-HQ)
Method x 256 x 1024
VAEBM [62] 20.38 -
StyleALAE [39] 19.21 -
PG-GAN [21] 3.03 -
COCO-GAN [28] - 9.49
VQGAN [11] 10.70 -
StyleGAN [23] - 517
HiT-B (Ours) 3.39 8.83*

References

StyleALAE [39] - 13.09
VQGAN [11] 11.40 -

INR-GAN [50] 9.57 16.32
CIPS [1] 4.38 10.07
StyleGAN?2 [24] 3.83 4.41
HiT-B (Ours) 295 637

[70] Zhao et al. “Improved consistency regularization for GANs”. AAAI, 2020.



Results: Higher Resolution Generation

« Comparison with the main competing methods in terms of number of network

parameters, throughput, and FID on FFHQ 256 x 256. The throughput is measured on a

single Tesla V100 GPU.

: #params  Throughput FID |
Architecture - Model (million) (images / sec) | (FFHQ x256)

ConvNet StyleGAN2 [24] 30.03 95.79 3.83

INR CIPS [1] 45.90 27.27 4.38

INR-GAN [50] 107.03 266.45 9.57

HiT-S 38.01 86.64 3.06

Transformer HiT-B 46.22 52.09 2.95

HiT-L 97.46 20.67 2.58




Results: CelebA-HQ

» Synthetic face images by HiT-B on CelebA-HQ 1024 x 1024 and 256 x 256.




Results: Latent Interpolation

« Latent linear morphing on the CelebA-HQ 256 x 256 dataset between two synthetic face
Images — the left-most and right-most ones.
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Results: Effectiveness of Regularization

» The effectiveness of bCR [70] on both StyleGAN2 and HiT. {1 indicates the results of
StyleGANZ2 are obtained from [22] which uses a lighter-weight configuration of [24].

+bCR [70] | StyleGAN2 [24]" | HiT-S HiT-B HiT-L
X 5.28 6.07 5.30 5.13
v 3.91 3.06 2.95 2.58
A FID 1.37 3.01 2.35 2.55

References

[22] Karras et al. “Training generative adversarial networks with limited data”. NeurlPS, 2020.
[24] Karras et al. “Analyzing and improving the image quality of StyleGAN”. CVPR, 2020.
[70] Zhao et al. “Improved consistency regularization for GANs”. AAAI, 2020.
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