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Background

Minimax optimization recently has attracted increased interest due to
advance in machine learning applications such as generative
adversarial networks (GANSs), robust neural networks training, fair
learning and federated learning. For example, distributionally robust
federated learning can be represented a minimax optimization
problem,
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where p; € (0,1) denotes the proportion of i-th device in the entire model, and fi(w;§) is the
loss function on i-th device, and A > 0 is a tuning parameter, and (p) is a strongly-convex
regularization, Here Il = {p € R". : > p; = 1, p; > 0} is a n-dimensional simplex, and © C R¢
1s a nonempty convex set.




Background

So recently many methods have been developed to solve these
minimax optimization problems. For example, the gradient
descent ascent method and its variants have been widely studied.

Although recently many methods have been proposed to solve
these minimax problems, they suffer from a high gradient
complexity and only focus on some specific minimax problems.

Thus, in the paper, we propose a class of efficient mirror descent
ascent methods for solving nonconvex-strongly-concave minimax
problems with nonsmooth regularization.
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Mirror Descent

A proximal viewpoint to Projected Gradient Descent

min f(z)
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Mirror Descent

This quadratic proximity term only can deal with some homogeneous local
geometry of objective function, but not deal with some inhomogeneous or
even non-Euclidean local geometry of objective function. Thus, the mirror
descent method use the Bregman distance instead of Euclidean distance.

Replace the quadratic proximity ||z — x¢||3 with distance-like metric
D,
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Bregman divergence
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where D, (z, z) == p(x) — p(2) — (Vy(z),x — z) for convex and
differentiable ¢
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Mirror Descent Ascent Methods

In the paper, we study the following nonsmooth nonconvex-strongly-concave minimax problem:

mig max F(z.y) = {f(z,y) +g(z) — h(y)}, (1)

where the function f(z,y) : R? x R? — R is smooth and possibly nonconvex in z € R? and
p-strongly concave in y € RP, and the functions g(x) and h(y) are convex and possibly nons-
mooth. Here the constraint sets X C R? and ) C RP are compact and convex. In many ma-
chine learning problems, f(x,y) generally represents loss function and is a stochastic fprm, i.e.,
f(z,y) = E¢[f(z,y; )], where the random variable £ follows an unknown distribution. Here both
g(z) and h(y) frequently denote the nonsmooth regularization such as g(x) = Al[z||;.

Algorithm 1 (Stochastic) Mirror Descent Ascent Algorithm

1: Input: T, stepsizes {7; > 0,\; > 0,7, € (0,1]}{_, mini-batch size b ;

2: initialize: x; € X and y, € V;

3:fort=1,2,....T do

4:  MDA: Compute partial derivatives v; = V, f(x¢,y:) and w; = V, f (x4, y¢);

5:  SMDA: Generate randomly mini-batch samples B; = {£:}2_, with |B;| = b, and compute
stochastic partial derivatives v; = V. fg, (z¢,y;) and w, = V, fB, (v¢, yt);
Given the mirror functions v¢; and ¢;;
Tes1 = argmingex { (v, 7) + g(x) + L Dy, (z,24) }:

6
7
8  yir1 =Y +Ne(Jrr1 — ye) where Jr1 = argmaxyey {(we, y) — h(y) — x-Dg, (4, ) }3
9: end for

0: Output: x, and y. chosen uniformly random from {z;, yt}gzl.




Mirror Descent Ascent Methods

In Algorithm[I] we use (stochastic) mirror decent to update the parameter x, and simultaneously use
(stochastic) mirror ascent to update the parameter y. When choose the mirror functions 9, (x) =
%”EBHE and ¢;(y) = %||y||2 forallt > 1, we have D, (z,x;) = %”IB — z¢||* and Dy, (y,yt) =
||y — y¢||*. Under this case, Algorithmwill reduce the standard (stochastic) proximal gradient
descent ascent algorithm. When choose the mirror functions v (x) = %mTH ¢xand ¢ (y) = %yTth

forallt > 1, we have Dy, (z,2;) = %(:r—xt)THt(x—xt) and Dy, (y,y:) = %(y—yt)TGf(y—yt),

where H; = ply and G; = pl,. For example, given o € (0,1) and p > 0, we can generate the
matrices H; and G, like as in Adam-type algorithms [20} [19], defined as

o =0, 0 = av_1 + (1 — ﬂ)vxf(ftayﬁﬁt)za H; = diag(\/’f’_tJr p),t>1 (8)
wo =0, Wy = aily—y + (1 — )V fxe,y:&)°, Gy = diag(v/ e +p), t > 1 9)

Under this case, our SMDA algorithm will reduce a novel adaptive gradient descent ascent algorithm.




Mirror Descent Ascent Methods

Algorithm 2 Accelerated Stochastic Mirror Descent Ascent (VR-SMDA) Algorithm

1: Input: 7', g, stepsizes {7, > 0,A; > 0,7, € (0,1]}_,, mini-batch sizes b and b;;
2: initialize: r, € A and y; € V;

3:fort=1.2,....Tdo
4: if mod (t,q) = 0 then
5 Randomly generate mini-batch samples B; = {£:}°_, with |B;| = b;
6: Compute stochastic partial derivatives vy = V. fg, (z¢, y¢) and wy =V, B, (x4, ¥4 ):
7:  else
8 Randomly generate mini-batch samples Z, = {&; }7L | with |Z,| = by;
9 Compute stochastic partial derivatives
ve = Vafz, (e, yt) — Vafr, (Te-1,y1-1) + ve-1, (14)
wy = Vy fr, (e, ys) = Vy fr, (Te—1, Y1) + wi_1; (15)
10:  endif
11:  Given the mirror functions 7y and ¢;;
12:  xyyq = argmingey { (v, ) + g(z) + %Dw: (z,2¢) };
132 ye41 =yt + ne(Ye+1 — ye) where ;1 = argmaxyey {(“—’tw y) —h(y) - ;._ltDtt:t (v, yt)}?
14: end for

15: Output: x; and y, chosen uniformly random from {z;, y
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Convergence Results

We first introduce a useful convergence metric E||G; || to measure convergence properties of our
algorithms as in [24]. Given the generated parameters x; at ¢-th iteration by our algorithms, we define

a gradient mapping as

1

Ge = — (e — 741); (18)
it
1
zi1 = argmin {(Ve(z), 7) + g(x) + -, Do (z,24) }, (19)
T t

where ®(z) = f(z,y*(z)) — h(y*(x)) = max,ey{f(z,y) — h(y)}. When X = R? and g(z) is
a constant, and ¢ (z) = %||z||*, we have G, = V®(z) = V, f(z,y*(x)). Under this case, our
convergence metric E||G, | = E||V. f(z,y*(x))]|| is a common convergence metric used in [26].




Convergence Results

Assumption 1. (Smoothness) For our deterministic and mini-batch stochastic algorithms (MDA and
SMDA), we assume that the function f(x,y) has an L¢-Lipschitz gradient, i.e., for all x,,z9 € X
and i1,y € V, we have

IVF(z1,91) = VF(z2,92)ll < Lg|l(21, 91) = (22, 92) . (4)

For our variance-reduced stochastic algorithm (VR-SMDA ), we assume that each component function
f(z,y: &) has an Ly-Lipschitz gradient, i.e., for all x,,x2 € X and y,,y2 € ), we have

IVf(z1,y1;86) = V(x2,y2: 6| < Lgl[(x1,31) — (w2, y2) |, VE- (5)

In Assumption 1, the inequality () is commonly used in the minimax optimization 21 4L [8].
While the inequality (§) is frequently used in the variance-reduced stochastic optimization [28] [17]).

Assumption 2. Each component function f(x,y;£) has an unbiased stochastic gradient with
bounded variance o2, i.e.,

EVf(z,y;:)] = Vf(z,y), E|Vf(z,4:€) = Vf(z,y)l° <o” (6)

Assumption 3. The function f(x,y) is p-strongly concave w.r.t y, i.e., forall x € X and y,,y2 € Y,
we have ||V, f(xz,y1) =V f(x,y2)| = pllyr = y2||- Then the following inequality holds

1 .
f(-’!7=y1) < f(-’ffz?,r':z) + ‘:vyf(x:yZ}:yl — yz} - {E”yl — ”!Jz”z- (7)




Convergence Results

Assumption 4. The functions g(x) and h(y) are convex but possibly nonsmooth.

Assumption 3 shows that the function f(z,y) is u-strongly concave w.r.t y. Assumption 4 shows
that the function h(y) is convex. Thus, the function {f(xz,y) — h(y)} is strongly concave in
y € ), there exists a unique solution to the problem max,cy{f(x,y) — h(y)} for any . Let
y*(z) = argmax,cy{f(x,y) — h(y)}, and we define a function ®(z) = f(z,y*(x)) —h(y*(z)) =
maxyey (2, y) ~ hy)}.

Assumption 5. For any a € R, the sub-level set {x : ®(x) + g(x) < a} is compact. The function
®(x) + g(z) is bounded below in X, i.e., F* = inf,c x{®(x) + g(x)} > —oc.

Assumption 5 is frequently used in nonsmooth minimax optimization [8]]. In fact, when h(y) = ¢
where ¢ is a constant, we can only assume the function ®(x) + g(z) is bounded below in X" instead
of Assumption 5.




Convergence Results

Theorem 1. Suppose the sequence {xy,y; }1_, be generated from A.r'gor.irhmusing stochastic partial
derivatives (i.e., SMDA algorithm). Let0 <n=m < 1,0 <y =9 < min(j%%: g—%’ﬁ, %) and
) f

_ 1 ,
D<A=M < L7 we have

T n *
1 W 2(F(x) = F*)  4y2A, 10 200v/7A
= 2 ElG < V2P V201 | 100, 200V (20)
t=1

+ + + :
V3Tp V3Tvp  3bp 3/ ypub
where k = Ly /p, L= L(1 + k), F(z) = ®(z) + g(z) and Ay = ||y1 — y* (z1)]-

Remark 1. Given 0 <n <1, A = O(L%) v = min{z—i, gﬁgié‘, 2;..“52)‘) and p = O(LY}), (v = 0),
DN

HEU—E)

we have v = O(k" _3) and vp = O . Thus, our SMDA algorithm has a convergence rate of

O( RH;U + 4/ ”_hzy - ”3;2” ). When let v = % (i.e, p=0O(y/Ly)), b= T/k and \/% =¢/3,
we have T = O(k%e=2) and b = O(ke=2). Since our SMDA algorithm requires b samples to estimate
the stochastic partial directives v; and w; at each iteration, and needs T iterations, it has a sample
complexity of b1 = O(H3E_4) for finding an e-stationary point, the same complexity as in [23]].

When letv = 5/6 (i.e., p = le;{ﬂ)_ b=T/k'3 and £2 €/3, we have T = O(k'/3¢=?) and

T
b = O(e=2). Thus, our SMDA algorithm has a near optimal sample complexity of bT = O(k'/3¢=%),
the same complexity as in [I22]].




Convergence Results

Theorem 2. Suppose the sequence {x, yt}i';l be generated from Algorithm |I| using the deter-
ministic partial derivatives (i.e., MDA afgnn'rhmj Let 0 < p =1 < 1,0<v=m <

d3p Gnppi lﬂpp}. =
min( 7, 556,z )ﬂ”dﬂ < A=A < g, we have

A {4\/2@(::1)-?* 4\/*&1

where k = Ly /p, L = Li(1+ k), F(z) = ®(x) + g(x) and Ay = ||ly1 — v*(x1)]|.

Remark 2. Without loss of generality, let Ly > i Given 0 < n < 1, A = U(ﬁ}
v = min(3£, 2L 2—2’%%‘]-‘) and p = O(L[%—W]) (v = 0), we have T = O(s®=2)). Under
this case, our MDA a!garfrhm has a sample complexity of T' = O( (2-20) ¢ ) for finding an e-

stationary point. When let v = (), our MDA algorithm has a sample complexity t‘}'f T = O(k%e2), the
same complexity as in [4]. When let v = 1/2, our MDA algorithm has a lower sample complexity of

T = O(ke?2) than the sample complexity of [4) 2| In solving the problem (T) without the nonsmooth
regularization, when let v = 3/4, our MDA algorithm has a near optimal sample complexity of

T = O(\/ke~2), the same complexity as in [27].

(25)




Convergence Results

Theorem 3. Suppose the sequence {x,, yt}?;l be generated from Al gr;rfrhmlz' Letby =¢q, 0 <: n=

o - (3 A 3 9pnpu _ .01
m<L0<y=mn< mm(ﬁ, ;’;"’Lf: 1%‘92”: %’1, iggig Jand ) < A = A\ < IIllIl(ﬂLf., lmnsz ),
38L% 7 19L%

we have

T 44/2(F(z1) — F*)
= S ElG < VAFG) F) | s 2 (22)

V3T~p T 3T xﬂﬂﬂbﬂf’
where k = L¢/p, L = Li(1 + k), F(x) = ®(z) + g(z) and Ay = ||y — y*(21)]l.
Remark 3. Given 0 < n < 1, A = O( ) v = min(%%,gﬁg:ﬁ%,%,%) and p =

t=1

o( Ll-l—!f) (v = 0), we have Tp = O(Kk?~2). Thus, our VR-SMDA algorithm has a convergence rate
of O fﬁ.;z ) h;u;zu})_ When let v = 0 (i.e.,p = O(Ly)), b = T/ and 1!"? = €/2, we

have T' = O(H. €~2). Further let by = q = O(ke™1) and b = O(ke™2). Since A,’gﬂrrrhmglrequires
b samples to estimate the stochastic directives vy and w, at each iteration when mod (t,q) = 0,
otherwise needs by samples, and need T iterations, it has a sample complexity of hW'T' + bT'/q =
O(k3e=3) for finding an e-stationary point, the same complexity as in [27]. Whenv =5/6 (i.e.,p =

11;6) b= T/'* and lﬁ = ¢/2, we have T = O(k3¢=2). At the same time, let by =

q=0(e ) and b = O(E_E}. Thus our VR-SMDA algorithm has a lower sample complexity of
T +bT/q = O(k3e3).
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Experimental Results

In this section, we perform two tasks (i.e., fair classifier and robust neural network training) to validate
efficiency of our algorithms. Specifically, we conduct these tasks on the Fashion-MNIST dataset as
in [33]] as well MNIST dataset and CIFAR-10 dataset. Fashion-MNIST dataset and MNIST dataset
consist of 28 x 28 arrays of grayscale pixel images classified into 10 categories, and includes 60, 000
training images and 10, 000 testing images. CIFAR-10 dataset includes 60,000 32 x 32 colour
images (50, 000 training images and 10, 000 testing images). We compare our algorithms (MDA,
SMDA and VR-SMDA) with the existing proximal gradient descent ascent algorithms (MAPGDA
[2], PAGDA [4] and PASGDA[4] ) for solving these nonsmooth nonconvex minimax problems. Note
that the Proximal-GDA algorithm in [8] only is a non-accelerated version of MAPGDA algorithm
[2]], so we omit it in the comparison methods. The experiments are run on CPU machines with 2.3
GHz Intel Core 19 as well as NVIDIA Tesla P40 GPU.




Experimental Results

1) Fair Classification

w  yey

3 3
minmax {3 yili(w) + g(w) —h(y)} st Y={yly>20 Y ui=1}, (@3
i=1 i=1

where w denotes the CNN model parameters, and £, L2 and L3 are the loss functions corresponding
to the samples in three different categories. Here we let g(w) = v1||w||y and h(y) = v2]|y||3. where

" [—maPGDA

28 - PAGDA ||
—=- MDA
E E.EHI"
~aal,
"\
22t \h"""--...
2:1| znu m ano Bm 1000 ] znu m ano Bm 1000 o mu 400 ﬁm Em 1000
Time (s) Time (s) Time (s)
(a) Fashion-MNIST (b) MNIST (c) CIFAR-10

Figure 1: Results of different deterministic methods on the fair classifier task.




Experimental Results
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(a) Fashion-MNIST (b) MNIST (c) CIFAR-10
Figure 2: Results of different stochastic methods on the fair classifier task.




Experimental Results

2) Robust Neural Network Training

T

min ) max L(f(ai +yi;w),bi), Y =A{y|llyilow <, i € [n]} (24)
i=1 7"

where (a;, b;) denotes the i-th data point, and w is the parameter of NN, and y; denotes is the
perturbation added to the i-th data point. Following [33], we approximate the inner maximization

4 4
|

—PASGDA

—PASGDA
> —SMDA | 3.5 —SMDA
VR-SMDA VR-SMDA
3 -
2 2
o 0 2.5¢
- 25 I
2F
2r 1.5}
1.5 - + 1 . -
0 50 100 150 0 50 100 150
Epoch Epoch
(a) Fashion-MNIST (b) MNIST
Figure 3: Results of different stochastic methods on the robust NN training task at Fashion-MNIST
and MNIST datasets.
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Conclusions




Conclusions

1) We proposed a class of efficient mirror descent ascent
methods for solving non-smooth non-convex minimax
problems;

2) We provided a convergence analysis framework for the
proposed methods, and proved our methods reach a
near optimal gradient (or sample) complexity than the
existing methods.
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