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Visual Question Answering (VQA)

Q1l: How many gray rubber cubes are the same
size as the yellow block?

Q&2: There is a rubber thing that is the same color
as the cylinder; what shape is it?

Q3: The matte ball that is the same size as the
gray rubber object is what color?
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Condition A
Cubes are gray, blue, brown, or yellow.
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Modular approach to
systematic generalization

Q: Is the gray cube the same size as the yellow cube?
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Modular approach to
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Is the gray cube the same size as the yellow cube?
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Is the gray cube the same size as the yellow cube?

Modular approach to
systematic generalization
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Is the green sphere the same size as the yellow cube?



Modular approach to
systematic generalization

Is the gray cube the same size as the yellow cube? Is the green sphere the same size as the yellow cube?
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Modular approach to
systematic generalization

Bahdanau et al. (2019), Systematic generalization: what is required and can it be
learned?

Bahdanau et al. (2020), CLOSURE: Assessing systematic generalization of
CLEVR models

Purushwalkam et al. (2019), Task-driven modular networks for zero-shot
compositional learning

Madan et al. (2021), When and how do CNNs generalize to out-of-distribution
category-viewpoint combinations?



Modules in Neural Module Networks

World
spheres, cubes / yellow, blue



World
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Modules in Neural Module Networks

World
spheres, cubes / yellow, blue
Library
shared module module per group of sub-tasks one module per sub-task
e R e aYs N (" (" ("
all shape color sphere cube yellow blue
5 [<sphere, cube, yellow, blue>] ) L[<sphere, cube>] JU [<yellow, blue>] L U U U
Usage
Question: Is this a yellow cube?
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Three stages library

IMAGE
ENCOD!ER all
to obtain
visual features

: : !

all
INTERMEDIATE
MODULES all[arg]
to carry out

sub-tasks

V V v

CLASSIFIER
to provide
an answer
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Libraries with different degrees of modularity
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Libraries with different degrees of modularity

IMAGE
ENCODER(S) all
to obtain
visual features sub-task 1
Illl sub-task 1
sub-tasks l
CLASSIFIER(S)
to provide all l
all answer sub-task 1
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Main libraries used for this study
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Library usage

Q: “Is the green object left of ‘&’%”



Experiment Outline

VQA-MNIST limited combinations of visual attributes

SQOOP limited co-occurrence of objects

CLEVR-CoGenT application



VQA-MNIST: Limited visual attributes

Is the object blue? Is there a green object?
Is the object a ‘6’% Is there a bright object?
Is the object small? Is there a ‘4’?

Are the two objects the same color/size/ Is the green object left of ‘{’%
category/brightness? Is ‘8’ below the pink object?



Attribute extraction
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Attribute extraction
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Attribute extraction
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About library choice:
Tuning the degree of modularity,
specially at the image encoder stage,
Improves systematic generalization



SQOOP: Limited co-occurrence of objects

Weaker bias Stronger bias

Is D left of G% Is D left of G%
[D] [G] [D] [G]
[left of] [left of]

Bahdanau et al. (2019), Systematic generalization: what is required and can it be
learned?



Systematic generalization performance (%) on SQOOP

all - all - all all - sub-task - all
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Application on CLEVR-CoGenT split

Condition A

Cubes are gray, blue, brown, or yellow.
Cylinders are red, green, purple, or cyan.
Spheres are all colors.

Condition B

Cylinders are gray, blue, brown, or yellow.
Cubes are red, green, purple, or cyan.
Spheres are all colors.




Vector-NMN

scelne
Shared among

all sub-tasks filter_shape[cube]

filter_color[brown]

unique

same size

filter_shape[cube]

unique

query_color

'

CLOSURE: Assessing systematic generalization of CLEVR models
Bahdanau et al. 2020



Vector-NMN Our Vector-NMN with
modular image encoder

Scene Modular and dependent scene

Shared amon
J on the sub-task

all sub-tasks filter_shape[cube] filter_shape[cube]

IMAGE ENCODER
IMAGE ENCODER filter_color[brown] filter_color[brown]
unique unique
IMAGE ENCODER
same_size For colors same_size

filter_shape[cube] IMAGE ENCODER
For sizes

filter_shape[cube]

unique unique

query_color



Systematic generalization performance (%) on CLEVR-CoGenT

Tensor-NMN Vector-NMN Vector-NMN
with modular
image encoder (ours)

count 09.7 £ 0.8 70.4+04 71 +1
equal_color 75.6 £ 0.8 74+ 80+ 1
equal_integer 82.7 0.3 78 & 85 + 2
equal_material 74+ 2 74.2 £0.7 84 + 2
equal_shape 91 £+ 2 89 + 3 79 4= 2
equal_size 75+ 1 75 =* 1 88 £+ 2
exist 84.2 £ 0.4 84.4 + 0.4 84.4 + 0.5
greater_than 83.8 £0.6 83.6 £0.4 89 +1
less_than 80.7 0.9 82.0 £0.9 87 1+ 2
query_color b8 £ 1 60 £ 1 67 4
query_material 84.1 £0.9 84.7 0.4 88.2 + 0.8
query_shape 37 = 1 40 4 52 £
query_size 83.5 £ 0.6 84.7 £ 0.7 89.5 1+ 0.5
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Systematic generalization performance (%) on CLEVR-CoGenT

Tensor-NMN Vector-NMN Vector-NMN
with modular
image encoder (ours)
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Conclusions

Library choice:

» Tuning the degree of modularity improves systematic generalization

 Critical at the image encoder stage (for bias in the image)



New research questions

Other types of bias

Neural mechanisms for systematic generalization
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