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Summary Slide
Hypothesis: good idea to generate     with probability proportional to >0 rewards

 

no MCMC-like iterative process;     built sequentially (e.g. a graph, node by node)

Treat MDP like a flow network (water going through pipes), to get    , learn F that satisfies:

Use:                                                                                  Creates a diverse generative model!

in-flow of s’ out-flow of s’



Motivation: Small-molecule Drug Discovery

find drugs that bind to protein(s)
>1016~20 space (simplified + for one protein)

most molecules are bad:
- not chemically feasible
- not binders
- toxic

Needles in a haystack!

Protein

Drug



Motivation: Drug Discovery

Cartoon setup:

Oracle?

- Ideal: send diverse batches (10-100k) of candidates to a lab, O(weeks)
- For now: use noisy physics simulator, O(15 CPUs)/molecule

predict reward
cheaply (DNN)

This part is expensive 

and/or noisy!

(w/ biased noise)

generate molecule(s)

train 
generator

compute “real” reward

train reward 
predictor

occasionally query “oracle"

Initial data
{(x,y),..}
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Motivation: Drug Discovery
“empty molecule”

Build molecules block by block

Episodes end with terminal R > 0
(no intermediate rewards)



Motivation: Drug Discovery

Use noisy physics simulator, O(15 CPUs)/molecule

- Noise = lots of candidates “look good”
- Not quite a needle anymore, many modes!
- Best according to simulator    send to wet lab (one day), may fail there
- What to send?

Diverse modes! Generate all the high reward molecules that look good



Just apply Reinforcement Learning?

- We have an environment (actions = build molecule)
- We have a reward 
- RL! (Segler et al., 2017; De Cao & Kipf, 2018; Popova et al., 2019; 

        Gottipati et al., 2020; Angermueller et al., 2020)

RL is fast. But RL is greedily looking for one mode, even MaxEnt. 
Finding a few good/optimal modes makes PPO/SAC/SoftQL/&co happy.

    Not great for diverse batch oracle queries

https://arxiv.org/abs/1701.01329
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1905.13372
https://arxiv.org/abs/2004.12485
https://openreview.net/forum?id=HklxbgBKvr


Just apply MCMC?

- We have a Markov Chain (actions = edit molecule)
- We have a reward  = unnormalized probability, want to sample from it
- MCMC! (Seff et al., 2019; Xie et al., 2020)

But MCMC is slow, gets stuck in modes easily (lack of diversity!), requires 
mode-mixing for any new sample

    Not great for diverse batch oracle queries

https://arxiv.org/abs/1907.08268
https://openreview.net/forum?id=kHSu4ebxFXY


What about the usual generative models?

- Trained from positive samples only (e.g. existing drugs)

But we have a more informative (non-binary) signal! (reward)
- We don’t just want high reward, we want to avoid low reward (and have the data)
- Still possible to do great: Jin et al., 2018; Shi et al., 2020; Luo et al., 2021

https://arxiv.org/abs/1802.04364
https://arxiv.org/abs/2001.09382
https://arxiv.org/abs/2102.01189


Flow Networks as Generative Models

Hypothesis: a good objective is to generate x with probability proportional to R(x)

We want

without an MCMC-like iterative process.

Insight from SumTrees led to this, let’s start there.



SumTrees (& the control as inference view: SoftAC/SoftQL)
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What if it’s a DAG?
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What if it’s a DAG?
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- P(𝝉) ∝ R(𝝉) is bad if many 𝝉 lead to the 
  same X! 
- Exponentially bad in graph generation
  (combinatorial # of paths)



Interpreting the DAG as a flow network
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Interpreting the DAG as a flow network
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Interpreting the DAG as a flow network
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using
π(a|s) = F(s,a) / F(s)
we get  P(x) ∝ R(x)!

but multiple valid solutions? 🤔 
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Interpreting the DAG as a flow network

One more visualization:

                           flow = #particles moving through pipes

We want a valid flow, given the rewards (“#particles") of the terminal states



Satisfy flow conditions, for all s’

Your RL senses should be tingling ;)

Flow consistency

in flow of s’ out flow of s’



Satisfying the flow equations yields what we want

This is what we’re after!



How to train GFlowNet

Take inspiration from Bellman   TD(0) to learn F

Dangerous objective, F(s0,.) is going to be huge! F(s0) = Z



How to train GFlowNet

Instead, learn the log, and match flows in log-space

with an epsilon (care less about tiny flows)



Works well! Hypergrid results



Works well! Molecule results
Pretrain reward function once on 300k molecules (computed on CPU simulator)  
Modes are found faster, with better rewards

modes = Bemis-Murcko scaffolds



Motivation: Drug Discovery

Cartoon setup:

Oracle?

- Ideal: send diverse batches (10-100k) of candidates to a lab, O(weeks)
- For now: use noisy physics simulator, O(15 CPUs)/molecule

predict reward
cheaply (DNN)

This part is expensive 

and/or noisy!

(w/ biased noise)

generate molecule(s)

train 
generator

compute “real” reward

train reward 
predictor

occasionally query “oracle"

Initial data
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Works for Batch Active Learning

Use docking as oracle, send only batches:



Other Cool GFlowNet Facts

- This is an off-policy method!
- Converges with enough capacity
- Constructing a diverse batch is O(n) 

- Amoritizes the sampling that MCMC does into the training process
- Has an OOD potential, jumps to novel modes (hard for a MC to do)
- We get Z (= marginalization) for free

- Easy to fold epistemic uncertainty in R (useful for active learning)
- No need for likelihood computations (local “TD” updates)
- Takes advantage of scalar reward (!= pos/negative data in traditional generative models)

- There exists (at least one) equivalences between F and some “real” Qπ

- In fact, with Qπ where π is the uniform policy on a canonical tree



Recap: GFlowNet

- Generative model for discrete objects (e.g. graphs) with P(x) ∝ R(x)
- Based on a Bellman-like learning objective
- Explores by virtue of P(x) ∝ R(x) + not bound by Markov Chain 
- Not happy with a single good mode

Cons:

- Some design of R(x) necessary (e.g. R(x)𝛽)
- Reliance on “TD” could be an issue (Bengio et al., Agarwal et al., 2020)
- Tends to underfit (overestimates small Rs, underestimates large Rs)

https://arxiv.org/abs/2003.06350
https://arxiv.org/abs/2010.14498


Why this is promising

This is a general setup for solving black box optimization! 
→ And provide black-box exploration

- Discovering materials
- Discovering antibiotics 
- Discovering good controls for a plant, or hyperparameters in ML
- Reasoning tasks: discovering good explanations for data
- Causal discovery: discovering good causal models
- Estimates Z → free energies, empowerment?


