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Overview

* What is localized training data ?

e Quantify the training bias
e Distribution shift as domain adaptation

* Proposed Shift-Robust framework
e Standard GNN models
e Linearized GNN models

* Experiments

e Future work



1D vs. localized training data

IID training sample localized training sample



Localized annotations in real-world

e Spam and abuse detection problems typically have very
imbalanced label distribution (e.g., < 1% positive).

* Choosing the nodes to acquire labels in an IID manner is not
feasible!

* We want to have a reasonable amount of data points from the rare
positive class.



Localized data is biased

* A general graph neural network layer, final representation Z = Hk
H* = o(AH*"16%)
* To learn a semi-supervised classifier, cross-entropy loss function | is

widely used 1 M

e Data-shift [1] happens when the training data is biased from testing
* I:,rtrain (Xr Y) + I:)rtest (X, Y)

* In a neural network, we care about the shift happens in the last hidden
activated layer Z, i.e. Pr,,i, (Z,Y) # Pr« (Z,Y)

* Standard learning theory assumes, Pry;, (Y|Z) = Pry (Y|Z), such that,
Prtrain(Za Y) 7é Prtest(Za Y) — Prtrain(Z) 7& Prtest(Z)

[1] Quinonero-Candela, Joaquin, et al., eds. Dataset shift in machine learning. Mit Press, 20009.
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Quantify the distribution shift

* Assume two sets of representation vectors are generated by
probability distribution p and g, a valid discrepancy metric measures
the distribution shifts, CMD [1] for example,

1
CMD = |b—a|”E( ||2+Z k”Ck p) — ¢k (9)|l2,

[1] Zellinger, Werner, et al. "Central Moment Discrepancy (CMD) for Domain-Invariant Representation Learning." ICLR, 2016.



Negative effect of distribution shifts
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Distribution shift (CMD) between training and testing data could be a good indicator of
performance (F1) !
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(e.g., F; = PPR)

Two major variants of GNNSs
X A
Fl(G),"X,A) A Flﬁ'A)
2
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Traditional GNN

Standard GNNs: the graph inductive bias A is differentiable

Linearized GNN

— >

Feedforward

Backpropagation

Linearized GNNs: the graph inductive bias A is not differentiable




Examples of standard (deep) models
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Graph Convolutional Networks [1]
Message Pass Neural Networks [2]

GraphSAGE [3]

[1] Kipf, Thomas N., and Max Welling. “Semi-Supervised Classification with Graph Convolutional Networks.” ICLR, 2016.
[2] Gilmer, Justin, et al. "Neural message passing for quantum chemistry." ICML, 2017.
[3] Hamilton, William L., Rex Ying, and Jure Leskovec. “Inductive representation learning on large graphs.” NeurlIPS, 2017.



Examples of linearized (shallow) models
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Complexity of neural networks do not grow as number of propagations increase !

[1] Wu, Felix, et al. "Simplifying graph convolutional networks." ICML, 2019.

[2] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Glinnemann. "Predict then Propagate: Graph Neural Networks meet
Personalized PageRank." ICLR, 2018.

[3] Bojchevski, Aleksandar, et al. “Scaling graph neural networks with approximate pagerank.” KDD, 2020.



Standard GNN — regularization on Z

® = F(0,A)

* @ js fully differentiable. We sample an IID data of the same size of
training data and minimize the distribution shift between Z,..;, and
ZIID

1
L= i Z U(yiy 2i) + A - d(Zirain, Z1D)-

1 — 1
devp (Zuainy Zip) = 37— || E(Zuain) — E(Zmp) || + > b—alF |k (Zirain) — ¢k (Zm) ||,
k=2




Linearized GNN — instance re-weighting

® = F,(0,F; (4))

£ = - Bil(ys, B(hy)).

* We use importance sampling to mitigate the shift, calculate the
instance weight via kernel mean matching [1],

M
1
mln || Zﬂz ~ Zzﬁ(hi)“z, s.t. B < B < By,
i=1

[1] Gretton, Arthur, et al. "Covariate shift by kernel mean matching." Dataset shift in machine learning 3.4 (2009): 5



Shift-Robust training framework

1
LSR-GNN = Mﬁil(yi, CI’(SUi, A)) + A- d(Ztraina ZHD)-

* We choose APPNP [1] (a linearized model) as a concrete example that
both techniques can be applied

k—1
B Appnp = ((1 —a)fAF + o) (1-a)A' | F(O,X).
1=0 v
~  feature encoder

approximated personalized page rank

[1] Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Glinnemann. "Predict then Propagate: Graph Neural
Networks meet Personalized PageRank." ICLR, 2018.



Shift-Robust training framework

(e.g., F1 = PPR)
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Biased training set creation

* The localized training data in real-world applications is not easy to
control the degree of bias. We propose a scalable biased training data

generation process based on fast Personalized Page Rank
computation [1].

Algorithm 1: Biased Training Set Creation PPR-S(+, €, a)
1 Given a class ¢, label ratio 7, graph size N
2 Initialize the biased training set X = {} ;
3 while len(X)< N - 7 do
4 | Sample node i of class ¢, compute its top-v entries in 7" (€) via [2];
5 if 777" (€) has ~ non-zero entries then
0 | X.add(#!™(€)) ;
7 end
8 end

[1] Andersen, Reid, Fan Chung, and Kevin Lang. “Local graph partitioning using pagerank vectors.” FOCS, 2006.



Biased training data example

(a) IID sample (b) Biased sample (c) PPR-score on biased sample

Figure 1: A biased sample on Cora dataset for one class, orange indicates the training data, red indicates the
initial seed used in our PPR-S sampler. The PPR-score is presented in figure (c).



Experimental result on small benchmarks

Table 1: Semi-supervised classification on three different citation networks using biased training samples. Our
proposed framework (SR-GNN) outperforms all baselines on biased training input.

Method Cora | Citeseer PubMed
Micro-F11 | Macro-F11 | AF1 | | Micro-F11 | Macro-F11 | AF1 | | Micro-F11 | Macro-F11 | AF1 |

GCN (1ID) 808+ 1.6 | 80.1 1.3 0 703+19 | 66.8+1.3 | 0 | 798 + 14 | 78.8 + 1.4 0

Feat.+MLP 497 +25 | 483 +22 | 31.1 | 55113 | 52.7+1.3 25.2 51328 | 41.8£6.2 28.5
Emb.+MLP 576 £3.0 | 56.2+3.0 23.2 385+12 | 386 +1.1 31.8 604 +2.1 | 56.6 2.0 194
DGI T1.7+42 | 692+ 3.7 9.1 626 +16 | 600+ 1.6 7.6 580+53 | 524 +83 21.8
GCN 676 35 | 664+30 132 627 +£18 | 604+16 7.6 606 38 | 56060 192
GAT 584 +57 | 585+5.0 224 580435 | 55.0+2.7 12.3 552437 | 46.0+64 14.6
SGC 702 +30 | 68.0+3.8 10.6 6544+08 | 62.5+0.8 4.9 618 +45 | 574+72 18.0
APPNP 713 +41 | 69234 | 95 | 634+£18 | 61.2+1.6 6.9 63.4+42 | 58.7+7.0 16.4
w.0. KMM 72.1 +44 | 69.8+3.7 8.7 639+0.7 | 61.8+0.6 6.4 694+ 34 | 67.6 4.0 10.4
w.0. CMD 720+32 | 695+3.7 8.8 66.1 09 | 63.44+0.9 4.2 664 +40 | 64055 13.4
SR-GNN (Ours) 735 +33 | 71.4+ 35 7.3 | 671 +£09 | 64.0 0.9 3.2 713 22 | 70.2+24 8.5

SR-GNN outperforms other GNN baselines by accurately eliminating at least (~40%) of the negative effect.



Experimental result on large benchmark

Table 2: Semi-supervised classification on ogb-arxiv varying label ratio.

label(%) 1 % 5 %
Method Accuracy | A | | Accuracy | A
GCN (IID) 66.0+0.6 | 0 69.1+ 0.6 0
Feat.+MLP 455+ 0.6 | 21.5 | 43.7+03 | 254
Emb.+MLP 51.1+£1.3 | 149 | 569+ 0.8 | 13.2
DGI 448+ 30 | 21.2 | 49.7+33 | 194
GCN 593+12 | 6.7 | 653+06 | 3.8
GAT 58.6+1.0 | 74 | 634+10 | 5.7
SGC 59.0+£07 | 7.0 | 642+13 | 49
APPNP 598+ 1.1 | 6.2 | 651+26 | 4.0
w.0. KMM 60.6+0.2 | 54 | 651£1.8 | 4.0
w.0. CMD 61.0+0.3 | 50 | 658+2.0 | 3.3
SR-GNN (Ours) | 61.6+0.6 | 44 | 66.5+0.6 | 2.6

SR-GNN improve 2% absolute accuracy and eliminate ~30% of the negative effect by biased data.



Comparison with domain adversarial network
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* DANN [1] is a method that uses an adversarial domain classifier to
encourage similar feature distributions between different domains.

[1] Ganin, Yaroslay, et al. “Domain-adversarial training of neural networks.” JMLR, 2016.



Comparison with domain adversarial network

Table 6: Comparison of Domain-Adversarial Neural Network (DANN) and CMD regularizer used in SR-GNN
with biased training data.

Cora Citeseer PubMed
Method Micro-F11 | Macro-F11 | Micro-F11 | Macro-F11 | Micro-F11 | Macro-F17
GCN 68.3 67.2 62.4 60.2 59.2 53.8
DANN 69.8 68.5 63.8 61.0 64.8 61.8
CMD (Ours) 71.0 69.4 65.0 62.3 67.5 66.2
APPNP 71.3 69.2 63.9 61.6 64.8 60.4
DANN 71.6 69.5 64.3 61.8 67.8 65.4
CMD (Ours) 72.4 70.1 65.0 62.4 70.4 68.7

Under semi-supervised setting, the performance of DANN is more sensitive to the
domain loss. CMD regularizer performs better with more robust weight selection.
Not that CMD regularizer is one component of the proposed SR-GNN.



Apply Shift-Robust on other GNN instances

Table 3: Comparison of baseline and our SR(Shift-Robust) version (A (%) -relative loss with biased sample) .

Cora Citeseer PubMed
Method Micro-F11 | Macro-F11 | A(%) | Micro-F11 | Macro-F11 | A(%) | Micro-F11 | Macro-F11 | A(%)
GCN (IID) 80.8 80.1 0% 70.3 66.8 0% 79.8 78.8 0%
GCN 67.6 66.4 -12% 62.7 60.4 -8% 60.6 56.0 -19%
SR-GCN 69.6 68.2 -10% 64.7 62.0 -6% 67.0 65.2 -13%
DGI (IID) 80.6 79.3 0% 70.8 66.7 0% 77.6 77.0 0%
DGI 71.7 69.2 -9% 62.6 60.0 -8% 58.0 52.4 -20%
SR-DGI 74.3 72.6 -6% 65.8 62.6 -6% 62.0 57.8 -16%
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Varying a in biased training set creation
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o is the termination probability in PPR. Larger a means more localized PPR-neighbors.




SR-GNN on deeper models
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Figure 2: Comparison of GCN vs. SR-GCN model performance with the the same parameters. Our shift-robust
algorithm boosts the performance (top) consistently by reducing the distribution shifts (bottom).

Larger shift presented in deeper models! SR-GNN consistently works.



SR-GNN on wider models
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Figure 3: Comparison of GAT vs. SR-GAT model performance under increasing attention heads. Our shift-
robust algorithm boosts the performance (upper) consistently by reducing the distribution shifts (lower).

Smaller distributional-shift in wider models.



Future work

* Develop Shift-Robust GNNs on specific domains
* Maximize the performance when dealing with specific shift in spam and
abuse detection.
* Theoretical guarantee towards shift-robust requirement
* Fairness of training data
* Generalization error in terms of distributional shift



Thanks and Q&A

* More results are available: https://arxiv.org/pdf/2108.01099.pdf
* Questions and discussions: qiz3@Illinois.edu



https://arxiv.org/pdf/2108.01099.pdf

