Convex-Concave Min-Max Stackelberg Games

Background: Much progress has been made
on min-max optimization with independent

feasible sets:
mip maxf(x.9)

But little is known on min-max optimization
with dependent feasible sets which have
applications in deep learning, optimization,
and algorithmic game theory:

min max
XEX yeY:g(x,y)=0

f(xy)

Assumption: X and Y are compact-convex, f is
continuous and convex-concave, g is a vector-valued,
continuous, convex-concave function, which gives rise
to an interior feasible point.

Interpretation: zero-sum sequential, i.e., min-
max Stackelberg game, between x- and y-

players as the order of the min and max matter:

min max

X, F max min
XEX yEY:g(x,y)zof( y)

yEY x€X:g(x,y)20

fxy)

A solution (x, y*) € X X Y to this problem
can be modelled as a Stackelberg equilibrium:

f(x"y) < f(x", y)<mel)r(1yeyr;1&>§v)>o

fxy)

YEY: g(x y)>0

Y L]
y-player best responds x-player best-responds to
to x”.

the y-player’s best response.

Abstract: We introduce the first polynomial-

time algorithm to solve Convex-Concave
min-max Stackelberg games.

Tools: We define the value function of the

game as:
V(x) = max
yeY:g(x,y)=0

fxy)

We can then re-express the min-max Stackel-

berg game as:
min V(x)

XEX
Under our assumption V is continuous and
convex. If we can compute a subgradient
of V we can then run a subgradient
method!

Theorem (Subdifferential Envelope Theorem)

Let £,(y,4) = f(x,y) + Yk=1 e (x, ).

Suppose that y* (%), A" (X, y* (X)) is a
solution to

V(X) = max min L;(y, 4)

Then, yeY¥ 2eRrf

Vil (" (%), (X, y* (%))

is a subgradient of V at X.
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Algorithm idea:

1) Run gradient ascent on
f(x®, y) to obtain

the optimal y for x(®.

2) Compute a subgradient
Vat x®,

3) Take a gradient descent

step on V and obtain x(¢+1),

Theorem: The iteration
complexities of Nested GDA
for min-max Stackelberg
games are given as follows.
Here, pyand p, are strong
convexity/concavity
parameters and € is the
approximation quality of
the equilibrium.
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Nested GDA
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x(t+1) = l-l
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o [x(t) — L, (ym, A(x®, y(t)))]
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My [y® + V, f(x®, y®)]

Properties of f Iteration
Complexity

Hy-Strongly-Convex-gt,-Strongly- 0 (e —1)

Concave

H-Strongly-Convex-Concave 0 (8_2)

Convex-p,-Strongly-Concave 0 ( 8_2)

Convex-Concave 0 (8_3)

Experiments: We observe that the computation of equilibria in
a large class of markets is a convex-concave min-max Stackel-
berg game. Experiments suggest how smoothness properties
affect the convergence of our algorithms.
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