EvoGrad:
Efficient Gradient-Based Meta-Learning and
Hyperparameter Optimization

Ondrej Bohdal, Yongxin Yang, Timothy Hospedales

:® :l?g.:"\!"
},. NEURAL INFORMATION
‘;-i-) PROCESSING SYSTEMS
QY]
°

EvoGrad overview

e Efficient approach for gradient-based meta-learning
o Existing approaches: expensive second-order derivatives and a longer computational graph
o EvoGrad: first-order derivatives only

e Inspired by evolutionary techniques to efficiently compute hypergradients

e Significantly lower runtime and memory usage, with similar performance as

existing methods
o Canscale meta-learning to larger network architectures
e FEvaluated on several recent meta-learning applications
o Cross-domain few-shot learning with feature-wise transformations
o Noisy label learning with MetaWeightNet
o Low-resource cross-lingual learning with MetaXL

Background

e Goal: estimate hyperparameters A that minimize the validation loss ¢y of the
model parameterized by 0 and trained with loss ¢7 and A

A" = argmin 45, (), where £7,(A) = ly (A, 0%(A)) and 8" () = arg min {7 (A, 0)
A 6

Aty (A, 0°(N)) 9y (A, 0%(N)) 96" (\)
™ e (N ox

e Necessary to calculate hypergradient a‘v);V}(\)‘) _

e Directterm 2v(X6"(V) s typically zero, so simple first-order approximation is
not available

EvoGrad update

e Evolutionary inner step
o Sample K random perturbations € and apply them to model parameters 0 as 9k =0 + €L

o Compute training losses £, = f(Dr |0}, A)for Kmodels on the current minibatch D
o Calculate weights for each model as

Wi, Wos,.0y,WEg = Softmax([—fl, —62, s% oy —ZK]/T)
o Update model parameters via the affine combination

0" = w1601 + w09 + - - - + WO
) . _ . oty Of(Dy|67)
e Compute hypergradient using validationdata ax = ax
o Inner loop does not use gradients, so overall the method is first-order

e Do standard update of the base model afterwards

[llustration

k inner-loop

O

—_—

steps

—

g (i+k)

S
=
0..
..

8\2‘

Figure 1: Graphical illustration of a single EvoGrad update using KX = 2 model copies.

Comparison to existing methods

Table 1: Comparison of hypergradient approximations of 77 — 75 and EvoGrad.

Method Hypergradient approximation
_ oty _ Oty 041,
S Wl R
ooV GLye ow ot __ Otv oMy softmax(—
EvoGrad (ours) Sy + 55 X €555 = 3 + 58 X € o

Table 2: Comparison of asymptotic memory and operation requirements of EvoGrad and 77 — 75
meta-learning strategies. P is the number of model parameters, H is the number of hyperparameters.
K < H is the number of model copies in EvoGrad. Note this is a first-principles analysis, so the time
requirements are different when using e.g. reverse-mode backpropagation that uses parallelization.

Method Time requirements Memory requirements

T O(PH) OP + H)
EvoGrad (ours) O(KP + H) O(P+ H)

Experiments

e Simple problems
o 1-dimensional problem where we try to find the minimum of a function
o Meta-learning rotation transformation

e Recent meta-learning applications
o Cross-domain few-shot learning with feature-wise transformations

o Noisy label learning with MetaWeightNet
o Low-resource cross-lingual learning with MetaXL

lllustration using a 1-dimensional problem

e Minimize fv(g;) — (az — (),5)2 where parameter x is optimized using SGD
with fT(CU) — (x — 1)2 +)\HxH% that includes a meta-parameter A
e Closed-form solution for the hypergradientis g(A\) = (A — 1)/(X + 1)

Population: 2 Population: 10 Population: 100
1.00 1.00 1.00
0.75 0.75 0.75
0.50 0.50 0.50 -
B o025 0.25 0.25 1
| ..
(o)}
$ 0.0 0.00 0.00
S
£ -0.25 -0.25 -0.25
-0.50 -0.50 -0.50
—— Ground truth
-0.75 -0.75 -0.75 1
—— EvoGrad
-1.00 ; ; . . . ; —1 r -1.00 -— v ; ; . , .
025 0.50 0.75 1.00 125 150 1.75 2.00 025 050 0.75 1.00 1.25 150 1.75 2.00 025 050 0.75 1.00 1.25 150 1.75 2.00
A A A

Figure 2: Comparison of the hypergradient 0 fy /O estimated by EvoGrad vs the ground-truth.

[llustration using a 1-dimensional problem

Population: 2 Population: 10 o Population: 100
X1 ° 6=—=—g °
®o------ X ®------ X
% 9 % @
-=X -
=== ¢ x"-. ===:::_—§ x~..
-1 0 1 2 -1 0 1 2 2
X X

Figure 3: Trajectories of parameters x, A when following 0 fr/0z and O fy /O using SGD for 5
random starting positions. Comparison of trajectories using EvoGrad estimated (blue) or ground-truth
(red) hypergradient. The initial position is marked with a circle, and the final position after 5 steps is
marked with a cross. The shading is validation loss fy ().

Rotation transformation

e Goal:train amodel that correctly classifies rotated images
o Training datais originally unrotated

e How: meta-learnrotation angle

Table 3: Rotation transformation learning. The goal is to accurately classify MNIST test images
rotated by 30° degrees compared to the training set orientation. Test accuracies (%) of a baseline
model, and one whose training set has been rotated by the EvoGrad’s meta-learned rotation, and
associated EvoGrad rotation estimate (°). Accuracy for rotation matched train/test sets is 98.40%.

True Rotation Baseline Acc. EvoGrad Acc. EvoGrad Rotation Est.
30" 81.79 +0.64 98.11 +0.32 2847° 4523

Cross-domain few-shot classification via learned
feature-wise transformation

Approach from Tseng et al., ICLR’20
Goal: improve few-shot learning generalisation in cross-domain conditions
How: meta-learn stochastic feature-wise transformation layers that regularize
metric-based few-shot learners
Key steps:

o 1) Update the model with the meta-parameters on a pseudo-seen domain

o 2)Update the meta-parameters by evaluating the model on a pseudo-unseen domain by
backpropagating through the first step

EvoGrad efficiency improvements allow scaling from ResNet10 to ResNet34
within standard 12GB GPU!

Cross-domain few-shot classification via learned
feature-wise transformation

Table 4: RelationNet test accuracies (%) and 95% confidence intervals across test tasks on various
unseen datasets. LFT EvoGrad can scale to ResNet34 on all tasks within 12GB GPU memory, while
vanilla second-order LFT 77 — T, cannot. We also report the results of our own rerun of the LFT
approach using the official code — denoted as our run. EvoGrad can clearly match the accuracies
obtained by the original approach that uses 7 — 75.

Model Approach CUB Cars Places Plantae

- 4433 £0.59 29.53+045 47.76 £0.63 33.76 £ 0.52
. FT 44.67 £0.58 30.38 £0.47 48.40+0.64 35.40+0.53
% ResNetl0 LFTT; — 15 48.38 £ 0.63 32.21 £0.51 50.74 £0.66 35.00 £+ 0.52
—_ LFT 77 — T5 (ourrun) 46.03 £0.60 31.50 £0.49 49.29 £0.65 36.34 +0.59
[LFT EvoGrad 4739 £0.61 3251 +0.56 50.70+0.66 36.00 £ 0.56
z - 45.61 £0.59 29.54 £0.46 48.87+0.65 35.03+0.54
‘> ResNet34 FT 45.15£0.59 30.28 £0.44 4996 +£0.66 35.69 + 0.54

LFT EvoGrad 4597 £ 0.60 33.21 £0.54 50.76 £0.67 38.23 +0.58

- 62.13 £0.74 40.64 £0.54 64.34 £0.57 46.29 +0.56

FT 63.64 +£0.77 4224 £0.57 6542 +0.58 47.81 £0.51
S ResNetl0 LFTT) —1T» 64.99 +0.54 4344 +£0.59 6735+0.54 5039 +0.52
Z LFT Ty — T5 (ourrun) 65.94 £ 0.56 43.88 £0.56 65.57+0.57 51.43+£0.55
pid LFT EvoGrad 64.63 +0.56 42.64 £0.58 66.54 £0.57 52.92+0.57
S - 63.33 £0.59 40.50+£0.55 6494 £0.56 50.20 £ 0.55
vs ResNet34 FT 6248 +£0.56 41.06 £0.52 64.39 £0.57 50.08 &+ 0.55

LFT EvoGrad 66.40 £0.56 4425+£0.55 6723 +£0.56 52.47 +0.56

Cross-domain few-shot classification via learned
feature-wise transformation

-
N
w
o
o

I LFT EvoGrad
mm LFTT:-T,

=
o
1

@
I

o
n

150 4

»
n

100 A

Memory usage (GB)

Time per epoch (s)

w
o
L

o
i

0 -
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

Figure 4: Cross-domain few-shot learning with LFT: analysis of memory and time efficiency of
EvoGrad vs standard second-order 77 — 75 approach. Mean and standard deviation reported across
experiments with different test datasets. EvoGrad is significantly more efficient in terms of both
memory usage and time per epoch.

Noisy label learning with MetaWeightNet

e Approach from Shu et al., NeurlPS’19
e Goal:improve robustness to training with noisy labels

e How: train an auxiliary neural network that performs instance-wise loss
re-weighting on the training set

Noisy label learning with MetaWeightNet

Table 5: Test accuracies (%) for Meta-Weight-Net label noise experiments with ResNet-32 — means
and standard deviations across 5 repetitions for the original second-order algorithm vs EvoGrad.
EvoGrad is able to match or even exceed the accuracies obtained by the original MWN approach.

Dataset Noise rate Baseline MWNT, —T5 MWNT; — 15 (ourrun) MWN EvoGrad
0% 9289 +£0.32 92.04 +0.15 91.10 = 0.19 92.02 + 0.31

CIFAR-10 20% 76.83 £2.30 90.33 + 0.61 89.31 +0.40 89.86 + 0.64
40% 70.37 &= 2.31 87.54 + 0.23 85.90 £+ 0.45 87.74 £+ 0.54
0% 70.50 £ 0.12 70.11 £ 0.33 68.42 + 0.36 69.16 + 0.49

CIFAR-100 20% 50.86 £ 0.27 64.22 +0.28 63.43 £0.43 64.05 + 0.63
40% 43.01 £1.16 58.64 + 0.47 56.54 +0.90 57.44 +1.25

Noisy label learning with MetaWeightNet

2.00 200

B MWN EvoGrad
mm MWNT;—-T>

Time per epoch (s)
2 3 8 B & 3

N
w
"

o
i

CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Figure 5: Analysis of memory and time cost of MWN EvoGrad vs the original second-order MWN,
showing significant efficiency improvements by EvoGrad. Mean and standard deviation is reported
across 5 repetitions of 40% label noise problem.

Scalability analysis

e Modify the number of filters in the base model (MetaWeightNet application)

5..

Memory usage (GB)

0

S
'

w
!

N
L

-
!

0.0

0t2 Ot4 ofe 018 110 1t2
Number of model parameters ¢’

| M

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Number of model parameters ¢’

—&— MWN EvoGrad
e MWN T71 —T>

Figure 6: Memory and time scaling of MWN EvoGrad vs original second-order Meta-Weight-Net.
Efficiency margins of EvoGrad are larger for larger models.

Low-resource cross-lingual learning with MetaXL

e Approach from Xia et al,, NAACL'21

e Goal: more efficient transfer from source language to low-resource target
language

e How: meta-learn how to transform representations using a representation
transformation network

e Selected task: named entity recognition (NER) with English source language

MetaXL performance

Table 6: Test F1 score in % for named entity recognition task. English source language. The first two
rows are taken from the MetaXL paper, while our own runs are in the following rows. EvoGrad clearly
matches and even surpasses the performance of 77 — 75 baseline. Joint-training (JT) represents a
simple non-meta-learning baseline approach.

Method qu cdo ilo xmf mhr mi tk gn Average
] 66.10 55.83 80.77 69.32 71.11 8229 61.61 6544 69.06
MetaXL T — T5 68.67 5597 77.57 7373 68.16 88.56 6699 69.37 71.13
JT (our run) 59.75 49.19 7943 68.85 6842 8994 6190 6944 @ 68.37

MetaXL 77 — 75 (ourrun) 65.29 5633 76.50 67.24 71.17 89.41 66.67 64.11 69.59
MetaXL EvoGrad 71.00 57.02 8599 7040 6545 88.12 6697 70091 71.98

MetaXL Efficiency

-
o
n

5000 A - JT
B MetaXL EvoGrad

B MetaXLT;-T;

-
o
=)

4000 1

-
e
wn

3000 1

Pion
U
L
N
=]
=
)

o
o
L

1000

Memory usage (GB)
Time per epoch (s)

N
e
s

Figure 7: Analysis of memory and time cost of MetaXL. EvoGrad vs the original second-order
MetaXL, in the context of a simple joint-training (JT) baseline. EvoGrad consumes significantly less

memory than 7 — 75 and is faster. Mean and standard deviation is calculated over the 8 different
target languages.

Summary

e Efficient first-order method for gradient-based meta-learning and

hyperparameter optimization
e Significant improvements in runtime and memory, while achieving similar

performance as existing methods
e Practical impact shown on recent meta-learning applications from both

computer vision and natural language processing

Thanks!

Code: https://github.com/ondrejbohdal/evograd

