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● Efficient approach for gradient-based meta-learning
○ Existing approaches: expensive second-order derivatives and a longer computational graph

○ EvoGrad: first-order derivatives only

● Inspired by evolutionary techniques to efficiently compute hypergradients

● Significantly lower runtime and memory usage, with similar performance as 

existing methods
○ Can scale meta-learning to larger network architectures

● Evaluated on several recent meta-learning applications
○ Cross-domain few-shot learning with feature-wise transformations

○ Noisy label learning with MetaWeightNet

○ Low-resource cross-lingual learning with MetaXL

EvoGrad overview



Background

● Goal: estimate hyperparameters 𝛌 that minimize the validation loss   of the 
model parameterized by 𝜽 and trained with loss and 𝛌

● Necessary to calculate hypergradient

● Direct term   is typically zero, so simple first-order approximation is 
not available



EvoGrad update

● Evolutionary inner step
○ Sample K random perturbations 𝛜 and apply them to model parameters 𝜽 as 

○ Compute training losses  for K models on the current minibatch
○ Calculate weights for each model as

○ Update model parameters via the affine combination

● Compute hypergradient using validation data
○ Inner loop does not use gradients, so overall the method is first-order

● Do standard update of the base model afterwards



Illustration



Comparison to existing methods



Experiments

● Simple problems
○ 1-dimensional problem where we try to find the minimum of a function

○ Meta-learning rotation transformation

● Recent meta-learning applications
○ Cross-domain few-shot learning with feature-wise transformations

○ Noisy label learning with MetaWeightNet

○ Low-resource cross-lingual learning with MetaXL



Illustration using a 1-dimensional problem

● Minimize       where parameter 𝑥 is optimized using SGD 

with            that includes a meta-parameter λ
● Closed-form solution for the hypergradient is 



Illustration using a 1-dimensional problem



Rotation transformation

● Goal: train a model that correctly classifies rotated images
○ Training data is originally unrotated

● How: meta-learn rotation angle



● Approach from Tseng et al., ICLR’20

● Goal: improve few-shot learning generalisation in cross-domain conditions

● How: meta-learn stochastic feature-wise transformation layers that regularize 

metric-based few-shot learners

● Key steps:
○ 1) Update the model with the meta-parameters on a pseudo-seen domain

○ 2) Update the meta-parameters by evaluating the model on a pseudo-unseen domain by 

backpropagating through the first step

● EvoGrad efficiency improvements allow scaling from ResNet10 to ResNet34 

within standard 12GB GPU!

Cross-domain few-shot classification via learned 
feature-wise transformation



Cross-domain few-shot classification via learned 
feature-wise transformation



Cross-domain few-shot classification via learned 
feature-wise transformation



Noisy label learning with MetaWeightNet

● Approach from Shu et al., NeurIPS’19

● Goal: improve robustness to training with noisy labels

● How: train an auxiliary neural network that performs instance-wise loss 

re-weighting on the training set



Noisy label learning with MetaWeightNet



Noisy label learning with MetaWeightNet



Scalability analysis

● Modify the number of filters in the base model (MetaWeightNet application)



Low-resource cross-lingual learning with MetaXL

● Approach from Xia et al., NAACL’21

● Goal: more efficient transfer from source language to low-resource target 

language

● How: meta-learn how to transform representations using a representation 

transformation network

● Selected task: named entity recognition (NER) with English source language



MetaXL performance



MetaXL Efficiency



Summary

● Efficient first-order method for gradient-based meta-learning and 

hyperparameter optimization

● Significant improvements in runtime and memory, while achieving similar 

performance as existing methods

● Practical impact shown on recent meta-learning applications from both 

computer vision and natural language processing



Thanks!

Code: https://github.com/ondrejbohdal/evograd


