Overlapping Spaces for Compact Graph Representations

Kirill Shevkunov

Yandex, MIPT Moscow, Russia shevkunov.ks@phystech.edu

Liudmila Prokhorenkova

Yandex Research, MIPT, HSE University Moscow, Russia ostroumova-la@yandex.ru

NeurIPS 2021

Summary

- Background
- Proposed approach
- O Experiments
- Onclusions

- We introduce Overlapping Spaces (OS) for embedding structured data
- Main idea: subsets of coordinates can be shared between spaces of different types (Euclidean, hyperbolic, spherical, etc.)
- OS automatically learns optimal combination of spaces
- Due to complex geometry, OS allows for more compact representations

- Vector representations of objects are needed for many applications
- Distance between vector representations should preserve 'distance' between objects

- Vector representations of objects are needed for many applications
- Distance between vector representations should preserve 'distance' between objects
- Besides Euclidean space, what other options do we have?

3

イロト イヨト イヨト イヨト

Hyperbolic space: Lorentz Model

Definition

Given metric spaces $(M_1, d_{M_1}), \dots, (M_n, d_{M_n})$, product space is defined as $M_1 \times \dots \times M_n$ equipped with distance function $d_{l1} = \sum_{i=1}^n d_{M_i}$ or $d_{l2}^2 = \sum_{i=1}^n d_{M_i}^2$.

Examples: $\mathbb{S}_5 \times \mathbb{S}_5$, $\mathbb{S}_5 \times \mathbb{H}_5$, $\mathbb{S}_2 \times \mathbb{S}_2 \times \mathbb{H}_2 \times \mathbb{H}_2 \times \mathbb{E}_2$, ...

Definition

Given metric spaces $(M_1, d_{M_1}), \dots, (M_n, d_{M_n})$, product space is defined as $M_1 \times \dots \times M_n$ equipped with distance function $d_{l1} = \sum_{i=1}^n d_{M_i}$ or $d_{l2}^2 = \sum_{i=1}^n d_{M_i}^2$.

Examples: $\mathbb{S}_5 \times \mathbb{S}_5$, $\mathbb{S}_5 \times \mathbb{H}_5$, $\mathbb{S}_2 \times \mathbb{S}_2 \times \mathbb{H}_2 \times \mathbb{H}_2 \times \mathbb{E}_2$, ...

Problem: the best combination of spaces depends on the dataset.

Gu, Sala, Gunel, Ré, "Learning mixed-curvature representations in product spaces", ICLR 2018.

Overlapping spaces generalize product spaces

Importantly, they do not require signature brute-forcing

For two vectors we can compute the Euclidean distance (\mathbb{E}^{10}) :

For spherical and hyperbolic spaces, we can use differentiable mappings $M_S(x) : \mathbb{R}^{10} \to \mathbb{S}^{10}$ and $M_H(x) : \mathbb{R}^{10} \to \mathbb{H}^{10}$:

With such parameterization, we can use any conventional optimizer

In a similar way, we may construct a product space, e.g., $\mathbb{H}_5\times\mathbb{S}_5$:

Here
$$p_1^1 = [1..5], \ p_2^1 = [6..10]$$

K. Shevkunov & L. Prokhorenkova

Let us allow the mappings overlap:

We constructed a subspace of product space $\mathbb{H}_5\times\mathbb{S}_6$ with only 10 parameters per item

Proposed implementation, layer 0:

From single to overlapping space

э

Statement

Overlapping space is a metric space.

Image: A matrix and a matrix

3

Statement

Overlapping space is a metric space.

Extension: add shifted weighted inner product (WIPS) to OS Shifted WIPS: $d_{WIPS}(x, y) = c - \sum w_i x_i y_i$

 $d_{OS-Mixed} = d_{OS} + d_{WIPS}$

3

Time for some experiments!

3

Image: A matrix

Table: Graph reconstruction

	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCore
Nodes	312	1025	4941	4039	3227	986
Edges	48516 (weighted)	1043	6594	88234	3604	16687

э

Image: A matrix

Table: Graph reconstruction

	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCore
Nodes	312	1025	4941	4039	3227	986
Edges	48516 (weighted)	1043	6594	88234	3604	16687

Quality measures: distortion D_{avg} and mean average precision (mAP)

$$D_{avg} = \frac{2}{|V|(|V|-1)} \sum_{(v,u) \in V^2, v \neq u} \frac{|d_U(e(v), e(u)) - d_G(v, u)|}{d_G(v, u)}$$

Here d_G — original distance, d_U — distance between vector representations

Table: Distortion graph reconstruction, top results are highlighted, top metric results are underlined.

Signature	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCore
E10	0.00318	0.0475	0.0408	0.0487	0.0530	0.1242
H ₁₀	0.01104	0.0443	0.0348	0.0483	0.0279	0.1144
S10	0.01065	0.0519	0.0453	0.0561	0.0608	0.1260
$H_5^2 \equiv H_5 \times H_5$	0.00573	0.0345	0.0255	0.0372	0.0279	0.1106
$S_5 \times S_5 \equiv S_5^2$	0.00700	0.0501	0.0438	0.0552	0.0584	0.1251
$H_5 \times S_5$	0.00541	0.0341	0.0254	0.0346	0.0310	0.1195
H ⁵ ₂	0.00592	0.0344	0.0273	0.0439	0.0356	0.1163
S25	0.00604	0.0464	0.0416	0.0512	0.0543	0.1244
$H_{2}^{2} \times E_{2} \times S_{2}^{2}$	0.00537	0.0344	0.0302	0.0406	0.0437	0.1193
$O_{1}, t = 0$	0.00324	0.0368	0.0281	0.0458	0.0286	0.1141
$O_{1}, t = 1$	0.00325	<u>0.0300</u>	0.0231	0.0371	0.0272	0.1117
$O_{/2}, t = 1$	0.00530	<u>0.0328</u>	<u>0.0246</u>	0.0324	0.0278	<u>0.1127</u>
c — dot	0.04005	0.0412	0.0461	0.0236	0.0296	0.1085
c - wips	0.06468	0.0358	0.0442	0.0161	0.0238	0.1016
_{ce} -dot	0.08142	0.0424	0.0505	0.0192	0.0270	0.1048
$O_{mix-1}, t = 1$	0.00277	0.0243	0.0235	0.0172	0.0187	0.1026
$O_{mix-l2}, t = 1$	0.00464	0.0220	0.0258	0.0163	0.0198	0.1028

< 4 → <

Table: mAP graph reconstruction, top results are highlighted, top metric results are underlined.

Signature	UCSA312	CS PhDs	Power	Facebook	WLA6	EuCo
E10	0.9290	0.9487	0.9380	0.7876	0.7199	0.61
H10	0.9173	0.9399	0.9385	0.7997	0.9617	0.667
S10	0.9183	0.9519	0.9445	0.7768	0.7289	0.603
H ² 5	0.9247	0.9481	0.9415	0.8084	0.9682	0.678
S ₅ ²	0.9316	0.9600	0.9482	0.7790	0.7307	0.61
$H_5 \times S_5$	0.9397	0.9538	0.9505	0.7947	0.9751	0.684
H ₂ 5	0.9364	0.9671	0.9508	0.7979	0.8597	0.661
S5	0.9439	0.9656	0.9511	0.7800	0.7358	0.616
$H_2^2 \times E_2 \times S_2^2$	0.9519	0.9638	0.9507	0.7873	0.7794	0.649
$O_{11}, t = 0$	0.9538	0.9879	0.9728	0.8093	0.6759	0.658
$O_{1}, t = 1$	<u>0.9522</u>	<u>0.9904</u>	0.9762	<u>0.8185</u>	0.9598	0.669
$O_{12}, t = 1$	<u>0.9522</u>	<u>0.9938</u>	<u>0.9907</u>	0.8326	<u>0.9694</u>	0.70
c - dot	1	1	0.9983	0.8745	0.9990	0.74
c - wips	1	1	1	0.8704	1	0.774
$O_{mix-1}, t = 1$	1	1	0.9994	0.8806	0.9997	0.78
$O_{mix-l2}, t = 1$	1	1	1	0.9021	1	0.840

3

For many datasets, more than half of the weights are near-zero, so unnecessary components can be removed.

For Power dataset:

$$d_{O_{l1},t=1}(l,r) \propto 0.1 d_E(l_1^0,r_1^0) + 0.5 d_R(l_1^0,r_1^0) + 0.4 d_H(l_1^1,r_1^1),$$

where $l_1^0 = l[0..5], l_1^1 = l[6..10]$

We trained classical DSSM with different distance functions on Wikipedia search dataset:

Table: Search query examples

Query	Web site
Kris Wallace	en.wikipedia.org/wiki/Chris_Wallace
1980: Mitsubishi produces one million cars	en.wikipedia.org/wiki/Mitsubishi_Motors
code napoleon	en.wikipedia.org/wiki/Napoleonic_Code

Table: DSSM results, dimension 10, top three results are highlighted

Signature	Test mAP
E10	0.4459
H10	0.4047
S10	0.4364
H_{5}^{2}	0.4492
S ²	0.4573
$H_{5} \times S_{5}$	0.3295
H ₂ 5	0.3681
S5	0.4616
$H_2^2 \times E_2 \times S_2^2$	0.3526
c – dot	0.4194
$O_{11}, t = 0$	0.4562
$O_{1}, t = 1$	0.4498
$O_{2}, t = 1$	0.4456
$O_{mix-1}, t = 1$	0.4447
$O_{mix-l2}, t = 1$	0.4483

э

- We propose overlapping spaces that allow for parameter sharing between different sub-spaces
- **2** OS automatically learns optimal combination of combined spaces
- **③** OS allows for compact representations in various setups
- The proposed method can be combined with non-metric similarities leading to even more flexibility