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Pure exploration on structured
bandits
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In round t, an agent

1. pulls arm A; € [K]

2. receives the reward Xy, (t) ~ va,

o
Sequential sampling strategy: A; € Fr = o[A1, X1,.. ., Ar—1, Xe—1]i K8



Pure exploration with fixed confidence

Goal: Identify a certain answer i*(p) € Z
Example: Identify the best arm i*(p) = argmax (k] tk

A strategy consists of
e a sampling rule A; (arm to explore)

e a stopping rule 7 (time to stop)

e a F.-measurable decision rule i € Z (answer to return)



Pure exploration with fixed confidence

Goal: Identify a certain answer i*(p) € Z
Example: Identify the best arm i*(p) = argmax (k] tk

A strategy consists of

e a sampling rule A; (arm to explore)
e a stopping rule 7 (time to stop)

e a F.-measurable decision rule i € Z (answer to return)

We wish to minimize E,[7] subject to P,[i # i*(p)] <6
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Structured bandits

“Side information” is encoded by the structure

Popular structures: Unstructured, Linear, Lipschitz, Dueling,
Combinatorial, Unimodal, Monotone, Spectral and Cascading

Question 1. What is the sample complex gain achievable when

exploiting the structure?

Question 2. Can we devise a computational efficient algorithm
achieving the promised gains for all structures?



Lower bound [GK16]

For any good strategy,

liminf E”[Z] > T*(p),
0—0 |Og(3)

where T*(p1) ™! = sup,,cx infaeai(u) Soke1 wkd (ks Ak)

e > K — 1 simplex

o Alt(p) ={x € N:i*(A) # i*(p)}
o d(uk, Ax) : KL-divergent of arm-k reward distribution under A and p



Lower bound [GK16]

For any good strategy,

#[ ] *
e og(Zy = T )

where T*(p1) ™! = sup,,cx infaeai(u) Soke1 wkd (ks Ak)

e > K — 1 simplex

o Alt(p) ={x € N:i*(A) # i*(p)}
o d(uk, Ax) : KL-divergent of arm-k reward distribution under A and p

= An optimal algorithm has a sampling strategy described by
w*(u) = argmax Fu(w),

£ KTH
h F _ f d )\ %;S«T;r:;:
where  Fj,(w) AelAnlt Zwk (1ks Ak) Ny



Frank-Wolfe based sampling (FWS)



Frank-Wolfe based sampling

e Devise a simple algorithm (FW-based) to track

x(£) 22 w(u)



Frank-Wolfe based sampling

e Devise a simple algorithm (FW-based) to track

t—00

x(t) — w*(p)
e Envelope theorem shows that F, (w) = minjc; fi(w, p),
where J is a finite set and fj(w, p) is smooth Vj € J (F, is

non-smooth)



Frank-Wolfe based sampling

e Devise a simple algorithm (FW-based) to track
x(£) 2% w* ()

e Envelope theorem shows that F, (w) = minjc; fi(w, p),
where J is a finite set and fj(w, p) is smooth Vj € J (F, is
non-smooth)

e To deal with non-smoothness, define

He,(w, r) = cov{Vufi(w,p) :j € T, fi(w, u) < Fu(w) +r}



Frank-Wolfe based sampling

e Devise a simple algorithm (FW-based) to track
x(£) 2% w* ()

e Envelope theorem shows that F, (w) = minjc; fi(w, p),
where J is a finite set and fj(w, p) is smooth Vj € J (F, is
non-smooth)

e To deal with non-smoothness, define

He,(w, r) = cov{Vufi(w,p) :j € T, fi(w, u) < Fu(w) +r}

e Update

{ z(t 4+ 1) < argmax,cx minheHFu(X(t)yrt)<z — x(t), h),

x(t+1) « wEx(t) + 2pz(t +1) §<TH



FWS

Input: Confidence level §, sequence {r¢},~

Initialization: Sample each arm once and update w(K), x(K) = (%7 ce %), and fi(K)
t K
While tFp ) (w(t) < B(6, t) «-Stopping criteria or fi(t — 1) ¢ A

IF\/|t/K] € Nor i(t — 1) ¢ A, (Forced exploration) z(t) + (%, e %)

Else, (FW update)

z(t) < argmax min (z—x(t —1),h)
z€x hEHFﬂ(hl)(X(ffl);rr)

Update x(t) + t;tlx(t -1)+ %z(t)

Sample A¢ < argmax; xk(t)/wk(t — 1) (ties broken arbitrarily)

Update w(t) and fi(t) Ko

{xm

Output: *(f(t)) S



Theoretical Results




Asymptotic optimality of FWS

Theorem
For most pure exploration problems in structured bandits, FWS
satisfies:

Puli # i*(p)] < 6 and limsups_,q Eg([?) < T*(w)

With further assumptions, we can provide non-asymptotic upper
bound for E,,[7]



Numerical Results




Experiment (i) Unstructured bandits

Averaged sample complexity at § = 0.01
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Experiment (ii) Linear bandits

Averaged sample complexity at § = 0.01
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Experiment (iii) Lipschitz bandits

Averaged Sample complexity at § = 0.01
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Related work and conclusion

Related works:

e LMA [Mén19]: Apply mirror ascent to update x(t)

e Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach w*(u)

Unclear to extend the above approaches to general structures



Related work and conclusion

Related works:

e LMA [Mén19]: Apply mirror ascent to update x(t)

e Gamification [DMSV20, Sha21, JMKK21]: Use 2 player game
to reach w*(u)

Unclear to extend the above approaches to general structures

Conclusion:

e FWS is computationally and statistically efficient for general
pure exploration problems

e Theoretically, FWS matchs the instance-specific lower bounds

e Numerically, FWS outperforms all the other optimal {i%;&

algorithms in structured bandits
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