Class-Disentanglement and Applications In
Adversarial Detection and Defense

Kaiwen Yang!, Tianyi Zhou?, Yonggang Zhang?!, Xinmei Tian!, Dacheng Tao?

1. University of Science and Technology of China
2. University of Washington, University of Maryland
3. JD Explore Academy

JD. é'Té;M




Two Mysteries in Deep Neural Network:

1. What essential (minimum necessary) information in the input do DNNs mainly rely on to

make its classification predictions?
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2. Disentangle the adversarial perturbation in input space for adversarial detection and defense.
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Class Disentangle Results on Clean Data:

Test

Training o R(x) G ()
x 96.01(99.84) 92.68(99.65) 18.86(67.93)
R(x) 95.81(99.81) 96.20(99.82) 18.12(66.30)
G(z) 51.84(86.52) 25.67(68.98) 75.25(97.39)

Tab 1: Training on one part of CD-VAE and test on another part: Top-1 (Top-5). R(x) £ x —G(x)

* The classifier trained on R(x) and x share similar important class information.

* G(x) also contain some class (redundant) information.

* The classifiers trained on R(x) and G(x) uses different class information.




Class Disentangle Results on
Clean Image x vs. Adversarial Image x:

§=x—1a, 6g 2G(x)—G('), ér = R(z) — R(2)

* The adversarial perturbation mainly lies in
the class-essential part R(x).

* G(x) is not heavily distorted by
adversarial attack.

* R(x) only captures sparse and critical
regions of each image.
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0 13.654+0.88 39.094+1.40 0.14£0.00
0 4.15+£0.65 16.56 £2.47 0.39 +0.17
op 13.78 £0.92 40.97 +1.87 0.484+0.16

Tab. The [, norm of each disentangled part.

Fig. The visualization of each disentangled part.



Applications in Adversarial Detection and
Defense

Adversarial Detection using R(x")

* We found adversarial perturbation mainly lies in R(x").
* The sparse regions captured by R(x") largely narrow the search range for the attacked regions.
* Existing detection methods use x to detect adversarial examples against natural examples.

Adversarial Defense using G(x')

* G(x) also contains some redundant class information.

* G(x') which is not distorted by adversarial attack.

« We can defend adversarial adversarial defense by using G(x") for classification.



Adversarial Detection Performance

—_— FGSM BIM C&W PGD-l. PGD-I,
SEE TNR AUC TNR AUC TNR AUC TNR AUC TNR AUC
KD 4238 8574 7454 94.82 7333 9475 73.12 9459 70.62 93.62
KD (R(z)) (570" 89.69 96.79 9927 94.67 98.73 96.56 99.30 97.04 99.32
LID 69.05 93.60 7773 9520 7498 9432 7152 93.19 7257 93.46
LID (R(z)) 92.60 9859 86.42 9729 7642 95.10 87.54 97.57 87.63 97.38
MD 9491 98.69 8833 97.66 8630 9736 7723 9538 7670 95.33
MD (R(z)) 99.68 9936 9892 99.74 9894 99.68 99.13 99.79 99.13 99.77

Table 4: TNR and AUC (%) of adversarial detection on z vs. R(x) (ours) against 5 attacks (CIFAR-10)

CD-VAE can generally improve existing methods, simply by replacing x with R(x).



Adversarial Defense Performance

Dataset Defense Attack

< ] Clean PGD-7., PGD-/, C&W-/,, C&W-/5 StAdv

Normal 96.01 0.0 0.0 0.0 0.0 0.0

AT PGD-/ 86.8 51.7 24 .3 52.0 26.0 4.8

TRADES /7 84.9 55.1 28.0 53.8 28.3 9.2

AT PGD-/, 85.0 41.9 50.1 43.4 50.6 7.8

CIFARIO AT StAdv 86.2 0.1 0.3 0.2 0.5 539
HGD 80.75 75.93 75.44 75.84 77.15 23.04

APE-GAN 90.93 59.28 65.17 59.23 65.30 7.28

Ours 86.81 77.05 78.02 77.04 78.29 19.41

Normal 82.53 0.0 0.0 0.0 0.0 0.0

ImageNet AT PGD-/5 69.89 10.93 60.95 9.49 60.07 0.31
Ours 65.26 52.48 63.12 52.95 64.98 4.75

CD-VAE outperforms both adversarial training based methods and other preprocessing

based methods (HGD, APE-GAN)



Towards White-box Defense:
Modified Adversarial Training

s 51511)( E{(ac’,y):D(;(G(m’))[y]—11'1;1)(!//#,!, Dg(G(z))[y']<c} [LG(¢ 0) £ 3 ")/LD(LU, WG)] (8)
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Lp(w,we) =[— log D (G(2');wa)[y] — log D(R(2'); w)[argmax D (G (2”))[y']] ]
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(10)

* Slighly modify Lp in the previous objective.
* Train G(x") to predict the right class and R(x") to predict the attacked class.

* Enforce the class-essential information mainly distorted by the attack to move to
R(x") instead of G(x").



Robustness against White-Box Attack

Unseen Attacks Attack
Dataset  Defense Clean (mean) l lo JPEG ReColor StAdv
Normal 96.0 0.1 0.0 0.0 0.0 0.4 0.0
AT PGD-/ 86.8 27.2 49.0 19.2 30.2 54.5 4.8
TRADES /7, 84.9 31.0 52.5 233 - 60.6 9.2
CIFAR10 AT PGD-/5 85.0 40.3 305 478 60.3 53.5 7.8
AT ReColorAdv 934 7.9 8.5 3.9 19.2 65.0 0.0
AT StAdv 86.2 1.8 0.1 0.2 1.9 5.1 53.9
HGD 80.8 0.1 0.0 0.0 0.0 0.4 0.0
APE-GAN 90.9 0.2 0.0 0.0 0.0 1.1 0.0
Ours-{ 81.2 51.4 40.5 43.1 62.1 73.1 274
Ours-{o 81.0 50.4 394 424 616 72.2 28.4

Table 7: Defense accuracy (%) of our strategy and baselines against white-box attacks. AT-adversarial training.
“Unseen Attacks (mean)” reports the defense accuracy averaged over all the attacks that are not used for

adversarial training of the defense model. Ours-/, and Ours-/5 is trained using adversarial examples generated
by C&W attacks [7] within £, -ball of £2-ball respectively.

CD-VAE is robust to white-box attack and it can generalize well to unseen white-box attacks
(the attacks not used for adversarial training). It achieves the highest unseen attacks (mean)
accuracy. 0
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Welcome to our poster session.
Contact me If you have any questions:

kwyang@mail.ustc.edu.cn



