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Two Mysteries in Deep Neural Network:
1. What essential (minimum necessary) information in the input do DNNs mainly rely on to 
make its classification predictions?
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2. Disentangle the adversarial perturbation in input space for adversarial detection and defense.
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Class Disentangled Variational Auto-Encoder
(CD-VAE)

𝐺 𝑥 : Class-redundant part

𝑥 − 𝐺 𝑥 : Class-essential part
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𝑅 𝑥 ≜ 𝑥 − 𝐺(𝑥)



Tab 1: Training on one part of CD-VAE and test on another part: Top-1 (Top-5).

Class Disentangle Results on Clean Data:

𝑅 𝑥 ≜ 𝑥 − 𝐺(𝑥)
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• The classifier trained on 𝑅 𝑥 and 𝑥 share similar important class information.

• The classifiers trained on 𝑅 𝑥 and 𝐺 𝑥 uses different class information.

• 𝐺 𝑥 also contain some class (redundant) information.



Class Disentangle Results on 
Clean Image 𝒙 vs. Adversarial Image 𝒙′:
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Fig. The visualization of each disentangled part.

Tab. The 𝑙𝑝 norm of each disentangled part.

• The adversarial perturbation mainly lies in 
the class-essential part 𝑅(𝑥).

• 𝐺 𝑥 is not heavily distorted by 
adversarial attack.

• 𝑅(𝑥) only captures sparse and critical 
regions of each image.



Applications in Adversarial Detection and 
Defense
Adversarial Detection using 𝑹 𝒙′

• We found adversarial perturbation mainly lies in 𝑹 𝒙′ .
• The sparse regions captured by 𝑹 𝒙′ largely narrow the search range for the attacked regions. 
• Existing detection methods use 𝒙 to detect adversarial examples against natural examples.

Adversarial Defense using 𝑮 𝒙′
• 𝑮 𝒙 also contains some redundant class information.
• 𝑮 𝒙′ which is not distorted by adversarial attack.
• We can defend adversarial adversarial defense by using 𝑮 𝒙′ for classification.
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Adversarial Detection Performance

CD-VAE can generally improve existing methods, simply by replacing 𝒙 with 𝑹 𝒙 .
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Adversarial Defense Performance

CD-VAE outperforms both adversarial training based methods and other preprocessing 
based methods (HGD, APE-GAN)
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Towards White-box Defense:
Modified Adversarial Training

• Slighly modify 𝐿𝐷 in the previous objective.

• Train 𝐺(𝑥′) to predict the right class and 𝑅(𝑥′) to predict the attacked class.

• Enforce the class-essential information mainly distorted by the attack to move to 
𝑅 𝑥′ instead of 𝐺(𝑥′).
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Robustness against White-Box Attack

CD-VAE is robust to white-box attack and it can generalize well to unseen white-box attacks 
(the attacks not used for adversarial training). It achieves the highest unseen attacks (mean) 
accuracy. 10



Thanks! 
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Welcome to our poster session.

Contact me if you have any questions:

kwyang@mail.ustc.edu.cn


