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Inaccuracies in data hamper existing fair classifiers

However, data may not be accurate…

State-of-the-art approaches to mitigate the disparate impact of automated prediction find 
classifiers that are “fair” with respect to protected groups (e.g., defined by race and gender) 
[HPS16, ZVRG17, BDHH+18]
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Data

Features/LabelsProtected attributes

• Data can be strategically misreported [Luh19] and have missing protected attributes. E.g., 
racial/ethnic information in health care [Eli04] and in data scraped from the internet [DDSL+09]

• Missing values can be imputed. But imputation is bound to introduce errors, which can be 
correlated across samples [MPRS+18] and susceptible imperceptible changes [GSS15]

Is fair classification possible when a fraction of the data are arbitrarily perturbed?

Existing fair classification methods do not work when data has correlated/arbitrary perturbations



Model of fair classification
• Data: 𝑁 samples 𝑆 = 𝑥! , 𝑦! , 𝑧! !"#,…,& ∈ (features) × (labels) × (protected attributes)
• Loss function: Err 𝑓, 𝑆 ∈ [0,1] measures fraction of incorrect predictions by 𝑓 on 𝑆
• Fairness metric: E.g., statistical rate SR(𝑓, 𝑆) = '()ℓ *+"[-"#∣/"ℓ]

'23ℓ *+"[-"#∣/"ℓ]
• Desired fairness threshold: 𝜏 ∈ 0,1
Ideal fair classification problem:

When 𝑆 is known, (1) is a constrained optimization problem [HPS16, ZVRG17, BDHH+18]

Problem: We observe <𝑺 that is a perturbed version of the “true” data 𝑺

𝑓⋆ ≔ argmin-∈ℱ Err(𝑓, 𝑆), such that Ω 𝑓, 𝑆 ≥ 𝜏 |(1)

Idea: Solve Program (1) by replacing 𝑆 with the perturbed data <𝑺

Err(𝑓, 𝑆) & SR(𝑓, 𝑆) can be different from Err(𝑓, *𝑆) & SR(𝑓, *𝑆) → Output can be inaccurate/unfair
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Adversarial errors in data hinder prior approaches
Assumption: &𝑆 has IID perturbations with known distribution 𝓟 [LMZV19][AKM20][WLL21][CHKV21]

Approach: Given 𝓟 derive unbiased estimates SR ⟶ HSR and Err ⟶ HErr such that

For all 𝑖 ∈ [𝑁],     J𝑥! , J𝑦! , 𝑧̂! = 𝑥! , 𝑦! , 𝑧! + 𝝅𝒊,      where 𝝅𝒊 ∼
𝐢𝐢𝐝 𝓟

𝔼 HSR 𝑓, &𝑆 = Ω 𝑓, 𝑆 ± 𝑂(𝑁:#) and    𝔼 HErr 𝑓, &𝑆 = Err 𝑓, 𝑆 ± 𝑂(𝑁:#)

Other prior work consider similar settings:
• 𝒫 is not known but can be “estimated” using auxiliary data [WGNC+20]
• &𝑆 has arbitrary perturbations on samples selected uniformly without replacement [KL21]

Problem: Given 𝜂>0, 𝑁 samples 𝑆, HSR, and HErr, the adversary can perturb 𝜂𝑁 samples to 
generate &𝑆 such that Err(𝑓, 𝑆) and SR(𝑓, 𝑆) are “far” from 𝔼 HErr(𝑓, &𝑆) and 𝔼 HSR 𝑓, &𝑆

Perturbation model: Given 𝜂∈[0,1], adversary chooses any𝜂𝑁 samples and corrupts them arbitrarily

Adversary can 
replace by arbitrary

sample ( "𝑋, "𝑌, &𝑍)

𝑆 = 𝑥!, 𝑦!, 𝑧! ! *𝑆 = +𝑥!, +𝑦!, 𝑧̂! !

Problem: Rely on perturbations being independent and 𝓟 being known or can be estimated

Solve: min-∈ℱ HErr(𝑓, &𝑆), such that HSR 𝑓, &𝑆 ≥ 𝜏 |(2)

Adversary can 
replace selected 

samples arbitrarily

Adversary can pick 
any 𝜂 fraction of 

samples



Theoretical results

Main result: There is an optimization program parameterized by perturbation rate 𝜂 ∈ (0,1), 
desired fairness threshold 𝜏 ∈ [0,1], hypothesis class ℱ, and perturbed data &𝑆 with 𝑁 samples, 
such that the optimal solution 𝑓∘ ∈ ℱ satisfies:

1. Accuracy guarantee: Err 𝑓∘, 𝑆 ≤ Err 𝑓⋆, 𝑆 + 2𝜂,
2. Fairness guarantee: SR 𝑓∘, 𝑆 ≥ 𝜏 − 𝑂(𝜂).

Lower bound: Given perturbation rate 𝜂 ∈ (0,1), hypothesis class ℱ, perturbed data &𝑆, and 
fairness threshold 𝜏∈[0,1], it is information-theoretically impossible to find 𝑓∘ ∈ ℱ such that:
1. Accuracy guarantee: Err 𝑓∘, 𝑆 < Err 𝑓⋆, 𝑆 + 𝜼, and
2. Fairness guarantee: SR 𝑓∘, 𝑆 ≥ 𝜏 − 𝒐(𝜼).

𝝀-assumption: There is a known constant 𝜆 > 0 such that minℓ Pr< 𝑓⋆ = 1, 𝑍 = ℓ ≥ 𝜆
where 𝑓⋆ ≔ argmin-∈ℱ Err(𝑓, 𝑆), such that Ω 𝑓, 𝑆 ≥ 𝜏
In particular, the 𝝀-assumption ensures that for all ℓ ∈ 0,1 , Pr 𝑍 = ℓ ≥ 𝜆. 

Pathological case: If Pr 𝑍 = ℓ ≤ 𝜂 (for some ℓ ∈ 0,1 ), the adversary can perturb all 
samples in the ℓ-th protected group – <𝑺 gives “no information” about samples ℓ-th group
• Information-theoretically impossible to find 𝑓∘∈ℱ, s.t., Err 𝑓∘, 𝑆 <1/2 and SR 𝑓∘, 𝑆 > 1/2

Related work: PAC learning + adversary [BEK02]. Output 𝑓s.t.: Err 𝑓, 𝑆 ≤ min! Err 𝑓, 𝑆 +2𝜂,
But no fairness guarantee. We “match” their accuracy guarantee AND also give SR guarantee.



Adversary’s effect on accuracy and stat. rate

Challenge: Cannot derive 
unbiased estimates of predictive 

error or statistical rate on 𝑆
because the adversary can adapt 

perturbations to the estimates

Bound the “effect of the adversary:” Given a classifier 𝑓 ∈ ℱ and a perturbation 
rate 𝜂 > 0: Bound Err 𝑓, 𝑆 − Err(𝑓, *𝑆) and SR 𝑓, 𝑆 − SR(𝑓, *𝑆)



Adversary’s effect on accuracy and stat. rate
1) Effect of adversary on accuracy: Let ℓ 𝑥, 𝑧, 𝑦 ≔ 𝕀[𝑓 𝑥, 𝑧 ≠ 𝑦]
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2) Effect of adversary on statistical rate:

SR 𝑓, &𝑆 ≔ '()ℓ *+#"[-"#|B𝒁"ℓ]
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Statistical rate on &𝑆 and 𝑆 can be very different!

Accuracy on 𝑆 and &𝑆 are close to each other if 𝜂 is small

Error ℰ(𝑓, 𝜂, 𝑆) can be large if 
denominator is small compared to 𝜂
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samples perturbed

𝜂𝑁 samples perturbed



Adversary’s effect on accuracy and stat. rate

The direct approach is not possible because 𝑺 is not observed!

Definition (𝒓-stability). A classifier is 𝑟-stable for 𝑆 and &𝑆 if 𝑟 ≤ SR(𝑓, 𝑆)/SR(𝑓, &𝑆) ≤ 1/𝑟
Consequence of 𝒓-stability: If 𝑓 is 𝑟-stable, then SR(𝑓, )𝑆) ≥ 𝜏 ⟹ SR(𝑓, 𝑆) ≥ 𝜏 ⋅ 𝑟

Direct approach: Compute SR(𝑓, 𝑆) and SR(𝑓, &𝑆) to check if 𝑓 is 𝑟-stable

Lemma. Given 𝜂 ∈ (0,1), 𝑟 ∈ (0,1), 𝑓 ∈ ℱ, and 𝑆 and &𝑆 (which has 𝜂 ⋅ 𝑁 perturbed samples), 
if for all ℓ ∈ [𝑝], Pr K< 𝑓 = 1⋀ &𝑍 = ℓ ≥ 2𝜂 1 − 𝑟 :# − 𝜂, then 𝑓 is 𝑟-stable.

1) Effect of adversary on accuracy: Let ℓ 𝑥, 𝑧, 𝑦 ≔ 𝕀[𝑓 𝑥, 𝑧 ≠ 𝑦]
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2) Effect of adversary on statistical rate:

SR 𝑓, &𝑆 ≔ '()ℓ *+#"[-"#|B𝒁"ℓ]
'23ℓ *+#"[-"#|B𝒁"ℓ]
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(for some ℓ#, ℓF ∈ [𝑝])
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Statistical rate on &𝑆 and 𝑆 can be very different!

Accuracy on 𝑆 and &𝑆 are close to each other if 𝜂 is small
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Our framework
Parameter: 𝑟 ≔ 1 − 𝑂(𝜂)

min-∈ℱ Err 𝑓, &𝑆 (1)
s.t.,      SR(𝑓, &𝑆) ≥ 𝜏 ⋅ 𝑟 (2)
∀ℓ ∈ 𝑝 Pr K< 𝑓 = 1⋀ &𝑍 = ℓ ≥ F=

#: L
− 𝜂 (3)

The paper extends the framework to other fairness metrics Ω and multiple protected attributes

1) Fairness guarantee: Any feasible solution has statistical rate ≥𝜏 ⋅ 𝑟F due to Constraints (2)&(3)

• From Constraint (2),  SR(𝑓, <𝑺) ≥ 𝜏 ⋅ 𝑟
• From Constraint (3),  any solution is 𝑟-stable for 𝑟 = 1 − 𝑂 𝜂
• Combining these,      SR 𝑓, 𝑆 ≥ 𝑟 ⋅ SR(𝑓, ;𝑺) (definition of 𝑟-stability)

≥ 𝑟 ⋅ 𝜏 ⋅ 𝑟
≥ 𝜏 ⋅ 𝑟"

2) Accuracy guarantee: Follows because, under the 𝜆-assumption, 𝑓⋆ is feasible for Program (1)

Let 𝑓∘ be the optimal solution of Program (1)
Err 𝑓∘, 𝑆 ≤ Err 𝑓∘, ;𝑺 + 𝜼 (∀𝑓, Err 𝑓, 𝑆 = Err 𝑓, *𝑆 ± 𝜂)

≤ Err 𝑓⋆, ;𝑺 + 𝜼 (𝑓∘ is optimal for Program (1))

≤ Err 𝑓⋆, 𝑆 + 𝟐𝜼 (∀𝑓, Err 𝑓, 𝑆 = Err 𝑓, *𝑆 ± 𝜂)

Intuition: Find the classifier with min. predictive error on ;𝑺 that has SR ≥ 𝝉𝒓 on ;𝑺 and is 𝒓-stable



Empirical results on real-world data

Observations: • Better stat. rate than uncons. classifier (12%), with minimal loss in accuracy (7%)
• Similar (or better) fairness-accuracy trade-off than baselines

COMPAS data: Size ≈6000, protected attribute: gender (encoded as binary)
Two adversaries (𝜼=3.5%): ATN and AFN construct ;𝑺 to heuristically increase SR 𝑓⋆, *𝑆

“Select 𝜂𝑁 samples” furthest from 𝑓⋆’s decision boundary with 𝑍 = 1. for each sample, set *𝑍 = 2

Metrics: Accuracy and statistical rate (w.r.t. the unperturbed dataset 𝑆); 𝜏 varies from 0 to 1

The paper also contains empirical results on UCI Adult data, other fairness metrics, and adversaries

ATN (𝜼=3.5%) AFN (𝜼=3.5%)

Idea: Samples far from decision boundary of 𝑓⋆ are “confident.” Perturbing their protected attributes  
also increases the statistical rate of other classifiers along with 𝑓⋆

Unconstrained    (This work) [LMZV19]    [AKM20] [CHKV21]     [KL21]

These are not intended to be worst-case. But our guarantees hold for worst-case adversaries



Key takeaways

Limitations and future work
• Efficacy depends on appropriate choices of parameters: 𝜏 and 𝜂; e.g., either overly 

conservative or optimistic 𝜂 can decrease accuracy and fairness

• Is there a different model of perturbations that is also realistic and but allows for fairness 
and accuracy guarantees without additional assumptions?

• Most existing frameworks for fair decision making assume data is accurate, or make 
independence assumptions on the errors

• In many applications, data has perturbations that are across samples, and may even be 
correlated strategically chosen

• Such errors hurt both fairness and accuracy guarantees of existing frameworks

• We study fair classification with adversarial perturbations in the data
• Give a framework for fair classification whose optimal solution classifier has provable 

guarantees on fairness and accuracy 
• Both the fairness and accuracy guarantees are tight up to constants 

https://controlling-bias.github.io/

Must be considered as a part of a broader system for mitigating bias

Conclusion

https://controlling-bias.github.io/
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