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Partial Differential Equations
A partial differential equation (PDE) relates a multivariate function defined over 

some domain to its partial derivates.  




Numerical Methods
Numerical methods such as finite element or 

finite differences methods discretize the input 
domain. 


Reduces the problem to solving a system of 
linear equations.


Computation cost for  error is  


Prohibitive in high dimensions 
(curse of dimensionality)

O(ϵ) ∼ ( 1
ϵ )

d



Solutions using Neural Networks
Use Neural networks to represent the solutions to PDEs.


Empirical benefits:


Mesh free  (E and Yu. 2017, Raissi et al. 2017)


Expressivity (Li et al. 2020)


Do not scale exponentially in the input dimension (Grohs et al. 2018)


Theoretical Analysis:


Previous work (Sirignano et al. 2018, Khoo et al. 2017) prove universal approximation 
based bounds. They do not analyze when can neural networks improve upon grid 
based methods. 



Our Result
For the class of linear elliptic PDEs, if the coefficients of the PDE are approximable by 

neural nets with at most  parameters, then the solution to the PDE can be 
approximated by a neural network with  parameters.


We introduce a technique wherein we simulate gradient descent in an appropriate function 
(Hilbert) space through the very architecture of a neural network. Each iterate, given by a 

neural network is subsumed into the (slightly larger) network representing the subsequent 
iterate.

N
O(dlog( 1

ϵ )N)



Linear Elliptic PDE
A linear elliptic PDE is defined as:





where  is a bounded open set with boundary .  Further, for all , 

 is a matrix valued function, such that , and , s.t, 

.   


For the operator :   are the (eigenvalue, eigenfunction) pairs, where 

{(Lu)(x) ≡ (−div (A∇u) + cu)(x) = f(x), ∀x ∈ Ω,
u(x) = 0,∀x ∈ ∂Ω,

Ω ⊂ ℝd ∂Ω x ∈ Ω
A : Ω → ℝd×d A(x) ≻ 0 c : Ω → ℝ
c(x) ≥ 0

L (λ, φ)∞
i=1

0 < λ1 ≤ λ2 ≤ ⋯ .

Here  denotes the divergence operator: Given a vector field div F : ℝd → ℝd, divF = ∇ ⋅ F =
d

∑
i=1

∂Fi

∂xi



Assumptions

Functions  are infinitely differentiable and can be -approximated by neural networks with 

infinitely differentiable activations and  and  parameters respectively. 


The function  can be approximated by the neural network  with   parameters such that 

. 


There exists a function  that lies within the span of the first-k eigenfunctions of  such that 

. 

A, c ϵ
NA Nc

f fnn Nf
∥f − fnn∥L2(Ω) ≤ ϵnn

fspan L
∥f − fspan∥L2(Ω) ≤ ϵspan



Main Theorem

Theorem (informal): If there exists a neural network  with  parameters such that 

, for some , then for every  there exists a neural 

network with size





such that


                                                                           


where        and       . 

u0 N0
∥u⋆ − u0∥L2(Ω) ≤ R R < ∞ T ∈ ℕ

O (d2T(N0 + NA) + T(Nf + Nc))

∥u⋆ − uT∥L2(Ω) ≤ ϵ + ϵ̃

ϵ := (1 −
2

λk + λ1 )
T

R ϵ̃ = O(ϵspan + ϵnn)



Remarks
The number of parameters in the final network depends upon how close the initial estimate is to the 

solution  and its number of parameters . Therefore there will be a trade-off , where better 
approximation may require more parameters. 


While  as ,  is a bias error term that does not go to 0 as . It contains terms that 

depends upon the approximation errors for  not entirely lying in the span of the first k 
eigenfunctions of L.


The relation  comes from the fact that we are stimulating  steps of 

gradient descent on a strongly convex loss in a function space.  and can be thought of as the 
effective Lipschitz and strong convexity constants of the loss. 

u⋆ N0

ϵ → 0 T → ∞ ϵ̃ T → ∞
f

ϵ = (1 −
2

λk + λ1 )
T

R T

λk λ1



Proof Sketch
Define convergent sequence:


• We show that for operator , we can define a sequence of functions that converges 

to  optimal function approximation (in  norm) after  steps.


• The updates take the following form 


 


• By ensuring that each iterate remains close to the span of the top-k eigenfunctions 
of L, we make sure that all the functions in sequence and hence the solution satisfy 
the boundary condition. 


L
ϵ L2(Ω) O(log(1/ϵ))

ut+1 ← ut −
2

λk + λ1
(Lut − f )



Proof Sketch
Approximating iterates by neural networks: 


We show that if at step , the function  is a neural network with  parameters, then  is a 

neural network with  parameters. 


We use the following results to show the above recurrence: 


•  Backpropagation: If  is a neural network with  parameters, then the network 

that calculates its the gradient  for all  is a neural network with  parameters.


• The addition—or multiplication—of two functions representable as neural networks with sizes 

 can be represented as neural network with size 


t ut Nt ut+1
O(d2(NA + Nt) + Nt + Nf)

f : ℝm → ℝ N
df
di

i ∈ [m] O(2N)

N1, N2 O(N1 + N2)



Conclusion
Our key contribution is to show that the solution of a linear elliptic PDE can be 

approximated by a neural network with  parameters if the coefficients 

of the PDE are approximable by neural networks with at most  parameters.


Future work:


• Extension to other boundary conditions.  


• Lower bounds.


• Extension to other PDEs, for example the Helmholtz PDE. 

O(poly(d)N)
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