
Parametric Complexity Bounds for
Approximating PDEs with Neural

Networks
Tanya Marwah, Zachary C. Lipton, Andrej Risteski

Partial Differential Equations
A partial differential equation (PDE) relates a multivariate function defined over

some domain to its partial derivates.

Numerical Methods
Numerical methods such as finite element or

finite differences methods discretize the input
domain.

Reduces the problem to solving a system of
linear equations.

Computation cost for error is

Prohibitive in high dimensions 
(curse of dimensionality)

O(ϵ) ∼ (1
ϵ)

d

Solutions using Neural Networks
Use Neural networks to represent the solutions to PDEs.

Empirical benefits:

Mesh free (E and Yu. 2017, Raissi et al. 2017)

Expressivity (Li et al. 2020)

Do not scale exponentially in the input dimension (Grohs et al. 2018)

Theoretical Analysis:

Previous work (Sirignano et al. 2018, Khoo et al. 2017) prove universal approximation
based bounds. They do not analyze when can neural networks improve upon grid
based methods.

Our Result
For the class of linear elliptic PDEs, if the coefficients of the PDE are approximable by

neural nets with at most parameters, then the solution to the PDE can be
approximated by a neural network with parameters.

We introduce a technique wherein we simulate gradient descent in an appropriate function
(Hilbert) space through the very architecture of a neural network. Each iterate, given by a

neural network is subsumed into the (slightly larger) network representing the subsequent
iterate.

N
O(dlog(1

ϵ)N)

Linear Elliptic PDE
A linear elliptic PDE is defined as:

where is a bounded open set with boundary . Further, for all ,

 is a matrix valued function, such that , and , s.t,

.

For the operator : are the (eigenvalue, eigenfunction) pairs, where

{(Lu)(x) ≡ (−div (A∇u) + cu)(x) = f(x), ∀x ∈ Ω,
u(x) = 0,∀x ∈ ∂Ω,

Ω ⊂ ℝd ∂Ω x ∈ Ω
A : Ω → ℝd×d A(x) ≻ 0 c : Ω → ℝ
c(x) ≥ 0

L (λ, φ)∞
i=1

0 < λ1 ≤ λ2 ≤ ⋯ .

Here denotes the divergence operator: Given a vector field div F : ℝd → ℝd, divF = ∇ ⋅ F =
d

∑
i=1

∂Fi

∂xi

Assumptions

Functions are infinitely differentiable and can be -approximated by neural networks with

infinitely differentiable activations and and parameters respectively.

The function can be approximated by the neural network with parameters such that

.

There exists a function that lies within the span of the first-k eigenfunctions of such that

.

A, c ϵ
NA Nc

f fnn Nf
∥f − fnn∥L2(Ω) ≤ ϵnn

fspan L
∥f − fspan∥L2(Ω) ≤ ϵspan

Main Theorem

Theorem (informal): If there exists a neural network with parameters such that

, for some , then for every there exists a neural

network with size

such that

where and .

u0 N0
∥u⋆ − u0∥L2(Ω) ≤ R R < ∞ T ∈ ℕ

O (d2T(N0 + NA) + T(Nf + Nc))

∥u⋆ − uT∥L2(Ω) ≤ ϵ + ϵ̃

ϵ := (1 −
2

λk + λ1)
T

R ϵ̃ = O(ϵspan + ϵnn)

Remarks
The number of parameters in the final network depends upon how close the initial estimate is to the

solution and its number of parameters . Therefore there will be a trade-off , where better
approximation may require more parameters.

While as , is a bias error term that does not go to 0 as . It contains terms that

depends upon the approximation errors for not entirely lying in the span of the first k
eigenfunctions of L.

The relation comes from the fact that we are stimulating steps of

gradient descent on a strongly convex loss in a function space. and can be thought of as the
effective Lipschitz and strong convexity constants of the loss.

u⋆ N0

ϵ → 0 T → ∞ ϵ̃ T → ∞
f

ϵ = (1 −
2

λk + λ1)
T

R T

λk λ1

Proof Sketch
Define convergent sequence:

• We show that for operator , we can define a sequence of functions that converges

to optimal function approximation (in norm) after steps.

• The updates take the following form

• By ensuring that each iterate remains close to the span of the top-k eigenfunctions
of L, we make sure that all the functions in sequence and hence the solution satisfy
the boundary condition.

L
ϵ L2(Ω) O(log(1/ϵ))

ut+1 ← ut −
2

λk + λ1
(Lut − f)

Proof Sketch
Approximating iterates by neural networks:

We show that if at step , the function is a neural network with parameters, then is a

neural network with parameters.

We use the following results to show the above recurrence:

• Backpropagation: If is a neural network with parameters, then the network

that calculates its the gradient for all is a neural network with parameters.

• The addition—or multiplication—of two functions representable as neural networks with sizes

 can be represented as neural network with size

t ut Nt ut+1
O(d2(NA + Nt) + Nt + Nf)

f : ℝm → ℝ N
df
di

i ∈ [m] O(2N)

N1, N2 O(N1 + N2)

Conclusion
Our key contribution is to show that the solution of a linear elliptic PDE can be

approximated by a neural network with parameters if the coefficients

of the PDE are approximable by neural networks with at most parameters.

Future work:

• Extension to other boundary conditions.

• Lower bounds.

• Extension to other PDEs, for example the Helmholtz PDE.

O(poly(d)N)
N

