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Sampling by Underdamped Langevin MCMC

Problem: Sampling from p(x) o< exp(— vazl fi(x)).
Assumptions: ml 5 V2f(x), V2fi(x) < £1.

(ULD) dX¢ = Vidt, dVe = =V F(X)dt — yViedt + /27dB;.
ULD MCMC: Markov chain by discretization of ULD.
Oracles: Gradient oracle Vfi(x). Weighted Brownian oracle.

No function oracle.



Gradient Complexity

Table: Number of gradient evaluation of V£;(x) needed to sample from m-strongly-log-concave
distributions up to €1/d/m accuracy in 2-Wasserstein distance

Algorithms Gradient complexities

ULA (A. Dalalyan, 2017; Durmus, Moulines, et al., 2019) O(Ne~2)
LPM (A. S. Dalalyan, Riou-Durand, et al., 2020) O(Ne™1)
RMM (Shen and Lee, 2019) 6(N67%)
ALUM (Ours) O(Ne™3)
SG-LPM (Cheng et al., 2018) O(c72)
SVRG-LPM (Zou, Xu, and Gu, 2018) O(N + &1 4 Nie™3)
SVRG-ALUM (Ours) O(N + N3e—3)
(

SAGA-ALUM (Ours) 0




Accelerated ULD-MCMC (ALUM)

(ULD) dXy = Vidt, dVy = —VF(X¢)dt — v Vidt + \/2vdB;.
Estimation at time point h by only single gradient evaluation:

XL = Xo + () Vo — hipr(h — ah)VF(XED) + e o

V) = gho(h)Vo — hibo(h — ah)VF(X'E) + ey, jon:

X;SZ) =Xo+¢1(ah)Vo  —Ua(@mVE(Xo) + ex[o.an):
Similar to RMM (Shen and Lee, 2019) but save half gradient evaluations.
Surprisingly, dropping this term doesn’t hinder the convergence too much.

The asymptotic iteration complexity has same d, € dependence. In high precision
regime (e is small enough), the x dependence is also the same.



Variance Reduced ALUM (VR-ALUM)

= v _ _
VEVRE = ¥ S, (VACATY) = VA(R)) + T, VA(R).
(Johnson and Zhang, 2013)

v i i
VA = E Y e, (VEY) = VE(6)) + Ty VA(9])-
(Defazio, Bach, and Lacoste-Julien, 2014)

Bounded MSE property - control the gradient error for different gradient estimations in
a unified approach.
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Upper Bounds

Table: Iteration complexities for full gradient ALUM.

Problem Accuracy Iteration complexity

Sampling e/ d/min Wa 5(max(/{/5%,f@2))

Approximating ¢ in Lo O(max( Tﬁgefgd%, Tk))

Table: Gradient complexity for SAGA-ALUM and SVRG-ALUM.
Problem Accuracy Gradient complexity
Sampling ey/d/min Wa N(N+(bH+N%H3)(1 %)—i—bmz
Approximating ¢ in Lo O(N + T(kb+ k3 Ng) IQ% 3 %(b + N3))
Corollary

When b < O(N%), the gradient complexity of SAGA-ALUM and SVRG-ALUM for
sampling problem is O(N + N%E_%) and their gradient complexity for ULD
approximation problem is O(N + d%/\/%*%).



Lower Bounds for Approximation Error

Problem class: U are all strongly convex and uniformly smooth functions f; such that
mean of Lexp(— SN L fi(x)) is not too far from origin.

Single component gradient oracle: Vf;(x).

Weighted Brownian oracle: fOT e’ dBg(w).

Ground truth: X7 (w, U).

All possible randomized algorithms with n evaluations of oracles: A,,.

Worst case approximation error:

ey = Inf, sup Buep 5| X7(w, U) — A(w,@, V)3

AEA yeyy nd



Lower Bounds for Approximation Error

Theorem
When n < N which means that gradient evaluation number is less than components

number, we have eiln y = dCyi, where (1 is positive and independent of d, N, and n.

Theorem .
When gradient evaluation number n is multiple of N, we have 634" u = dCz%, where

G, is positive and independent of d, N, and n.

Corollary

For small enough target accuracy € such that > < dCy, in order to achieve e AU S E,
the minimum number of single component gradient oracle evaluations is

Q(N + d3N3e3).

This lower bound matches the upper bound in the dependence of d,
components number N, and approximation accuracy ¢.



In what sense VR-ALUM is optimal (or not)?

Optimal for approximating problem in the sense that any ULD MCMC algorithm with
better dependence on dimension d, components number N, approximation accuracy ¢
in gradient complexity doesn't exist.

Not necessarily optimal in sampling error, x dependence, or when other assumptions
and oracles exist.



Experiments

Bayesian logistic regression on LIBSVM datasets.
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VR-ALUM constantly outperforms other

. L Approximating efficiency is not sensitive to
discretizations of ULD. pproxi Ing efhciency | v

batch size when batch is relatively small.
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