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Sampling by Underdamped Langevin MCMC

Problem: Sampling from p(x) ∝ exp(−
∑N

i=1 fi (x)).

Assumptions: mI 4 ∇2f (x), ∇2fi (x) 4 L
N I .

(ULD) dXt = Vtdt, dVt = −∇f (Xt)dt − γVtdt +
√

2γdBt .

ULD MCMC: Markov chain by discretization of ULD.

Oracles: Gradient oracle ∇fi (x). Weighted Brownian oracle.
No function oracle.



Gradient Complexity

Table: Number of gradient evaluation of ∇fi (x) needed to sample from m-strongly-log-concave
distributions up to ε

√
d/m accuracy in 2-Wasserstein distance

Algorithms Gradient complexities

ULA (A. Dalalyan, 2017; Durmus, Moulines, et al., 2019) Õ(Nε−2)

LPM (A. S. Dalalyan, Riou-Durand, et al., 2020) Õ(Nε−1)

RMM (Shen and Lee, 2019) Õ(Nε−
2
3 )

ALUM (Ours) Õ(Nε−
2
3 )

SG-LPM (Cheng et al., 2018) Õ(ε−2)

SVRG-LPM (Zou, Xu, and Gu, 2018) Õ(N + ε−1 + N
2
3 ε−

2
3 )

SVRG-ALUM (Ours) Õ(N + N
2
3 ε−

2
3 )

SAGA-ALUM (Ours) Õ(N + N
2
3 ε−

2
3 )



AcceLerated ULD-MCMC (ALUM)

(ULD) dXt = Vtdt, dVt = −∇f (Xt)dt − γVtdt +
√

2γdBt .

Estimation at time point h by only single gradient evaluation:

X
(o)
h = X0 + ψ1(h)V0 − hψ1(h − ah)∇f (X

(e)
ah ) + ex ,[0,h],

V
(o)
h = ψ0(h)V0 − hψ0(h − ah)∇f (X

(e)
ah ) + ev ,[0,h],

X
(e)
ah = X0 + ψ1(ah)V0 ((((((((hhhhhhhh−ψ2(ah)∇f (X0) + ex ,[0,ah],

Similar to RMM (Shen and Lee, 2019) but save half gradient evaluations.

Surprisingly, dropping this term doesn’t hinder the convergence too much.
The asymptotic iteration complexity has same d , ε dependence. In high precision
regime (ε is small enough), the κ dependence is also the same.



Variance Reduced ALUM (VR-ALUM)

∇̃SVRG
k = N

b

∑
i∈Bk

(
∇fi (x

(e)∇̃
k )−∇fi (x)

)
+
∑N

i=1∇fi (x).
(Johnson and Zhang, 2013)

∇̃SAGA
k = N

b

∑
i∈Bk

(
∇fi (x

(e)∇̃
k )−∇fi (φik)

)
+
∑N

i=1∇fi (φik).
(Defazio, Bach, and Lacoste-Julien, 2014)

Bounded MSE property - control the gradient error for different gradient estimations in
a unified approach.

E[‖∇̃k+1 −∇f (x
(e)
k+1)‖22] ≤ Θ max

0≤i≤k
Qi ,

‖∇̃0 −∇f (x
(e)
0 )‖22 = 0,

Qk = N
N∑
i=1

‖∇fi (x
(e)
k+1)−∇fi (x

(e)
k )‖22.



Upper Bounds
Table: Iteration complexities for full gradient ALUM.

Problem Accuracy Iteration complexity

Sampling ε
√
d/m in W2 Õ(max(κ/ε

2
3 , κ2))

Approximating ε in L2 O(max(Tκ
2
3 ε−

2
3 d

1
3 ,Tκ))

Table: Gradient complexity for SAGA-ALUM and SVRG-ALUM.

Problem Accuracy Gradient complexity

Sampling ε
√
d/m in W2 Õ(N + (bκ+ N

2
3κ

4
3 )(1 + ε−

2
3 ) + bκ2

Approximating ε in L2 O(N + T (κb + κ
1
3N

2
3 ) + Tκ

2
3 d

1
3 ε−

2
3 (b + N

2
3 ))

Corollary

When b ≤ O(N
2
3 ), the gradient complexity of SAGA-ALUM and SVRG-ALUM for

sampling problem is Õ(N + N
2
3 ε−

2
3 ) and their gradient complexity for ULD

approximation problem is O(N + d
1
3N

2
3 ε−

2
3 ).



Lower Bounds for Approximation Error

Problem class: U are all strongly convex and uniformly smooth functions fi such that
mean of 1

Z exp(−
∑N

i=1 fi (x)) is not too far from origin.
Single component gradient oracle: ∇fi (x).

Weighted Brownian oracle:
∫ T
0 eθsdBs(ω).

Ground truth: XT (ω,U).
All possible randomized algorithms with n evaluations of oracles: An.
Worst case approximation error:

e2A,U := inf
A∈A

sup
U∈U

Eω∈PEω̃∈P̃‖XT (ω,U)− A(ω, ω̃,U)‖22



Lower Bounds for Approximation Error

Theorem
When n < N which means that gradient evaluation number is less than components
number, we have e2An,U ≥ dC1, where C1 is positive and independent of d, N, and n.

Theorem
When gradient evaluation number n is multiple of N, we have e2An,U ≥ dC2

N2

n3
, where

C2 is positive and independent of d, N, and n.

Corollary

For small enough target accuracy ε such that ε2 < dC1, in order to achieve eAn,U ≤ ε,
the minimum number of single component gradient oracle evaluations is

Ω(N + d
1
3N

2
3 ε−

2
3 ).

This lower bound matches the upper bound in the dependence of d ,
components number N, and approximation accuracy ε.



In what sense VR-ALUM is optimal (or not)?

Optimal for approximating problem in the sense that any ULD MCMC algorithm with
better dependence on dimension d , components number N, approximation accuracy ε
in gradient complexity doesn’t exist.

Not necessarily optimal in sampling error, κ dependence, or when other assumptions
and oracles exist.



Experiments

Bayesian logistic regression on LIBSVM datasets.
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VR-ALUM constantly outperforms other
discretizations of ULD.
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Approximating efficiency is not sensitive to
batch size when batch is relatively small.
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